CT-Connect

Programming Guide

Order Number: 05-0417-004
Revision/Update Information: This manual is an update
Software/Version: CT-Connect™ Server Version 3.0

CT-Connect Application Programming
Interface Version 3.0

Copyright © Dialogic Corporation 1998. All Rights Reserved.

All contents of this document are subject to change without notice and do not represent a
commitment on the part of Dialogic Corporation. Every effort is made to ensure the accuracy of this
information. However, due to ongoing product improvements and revisions, Dialogic Corporation
cannot guarantee the accuracy of this material, nor can it accept responsibility for errors or
omissions. No warranties of any nature are extended by the information contained in these
copyrighted materials. Use or implementation of any one of the concepts, applications, or ideas
described in this document or on Web pages maintained by Dialogic, may infringe one or more
patents or other intellectual property rights owned by third parties. Dialogic does not condone or
encourage such infringement. Dialogic makes no warranty with respect to such infringement, nor
does Dialogic waive any of its own intellectual property rights which may cover systems
implementing one or more of the ideas contained herein. Procurement of appropriate intellectual
property rights and licenses is solely the responsibility of the system implementer. The software
referred to in this document is provided under a Software License Agreement. Refer to the Software
License Agreement for complete details governing the use of the software.

DIALOGIC is a registered trademark and CT-Connect is a trademark of Dialogic Corporation.

ApplicationLink and Ericsson are registered trademarks of Ericsson/G.E. Mobile
Communication Inc.

DEC, DECnet, Digital, OpenVMS, VAX, and VMS are trademarks of Digital Equipment
Corporation.

DEFINITY is a registered trademark of Lucent Technologies BCS.

Hicom is a registered trademark of Siemens AG.

HP and HP-UX are registered trademarks of Hewlett-Packard Co.

IBM and OS/2 are registered trademarks of International Business Machines Corporation.
Meridian, Meridian 1, Nortel, and SL-1 are trademarks of Northern Telecom.

NetBIOS is a trademark of Micro Computer Systems, Inc.

Novell is a registered trademark of Novell, Inc.

Open Software Foundation, OSF, and OSF/1 are registered trademarks of Open Software
Foundation, Inc.

Solaris and Sun are trademarks of Sun Microsystems, Inc. in the United States and other countries.
SCO and UnixWare are registered trademarks, and SCO OpenServer is a trademark, of The Santa
Cruz Operation, Inc. in the United States and other countries.

Transarc is a registered trademark of Transarc Corporation.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company, Ltd.

Microsoft, MS, and MS-DOS are registered trademarks, and Windows, Windows NT, and Visual
Basic are trademarks, of Microsoft Corporation.

All other trademarks and registered trademarks are the property of their respective owners.
Publication date: June 9, 1998

For Sales Offices and other contact information, visit our website at http://www.dialogic.com.

www.dialogic.com

About This Manual

Contents

Part |
1 Introduction
11 CTC APIROULINES. e
111 Routines That Control the Communications Channel
1.1.2 Routines for Telephony Functions
1.1.3 Switch-Specific Routines
1.2 Sequence for Calling CTC APl Routines.
1.3 Formatof Routines.
131 Unsigned Integers and Windows 3.1/3.11
1.4 Use of Argumentso e
14.1 Data TYPe . .
1411 Data STtruCtUres e
1.4.1.2 UNIONS . . oo
1413 ATTAYS . o e
1.4.1.4 CTC Data Type Definitions
14.2 AccesstoData.
1.4.3 Passing Mechanism i
1.4.4 Passing Optional Data i,
15 Definitions. e
1.6 Condition Values for Status Returns.
16.1 Link Problems
1.7 Exception Handling
1.8 Calling CTC RoULINES.o
1.9 CTC and Multithreaded Programming
191 Threads
1.9.2 Multithreaded Programming
1.9.3 Thread Execution i

Xiii

1-1

1-4
1-6

1-7
1-7

1-7

1-8

1-8

1-8

1-9
1-10
1-10
1-10
1-11
1-12
1-12
1-12
1-12
1-13
1-13
1-13
1-14

194
195
1.10
1.11
1.12
1121
1.12.2
1.12.3
1124
1.125
1.12.6
1.12.7
1.12.8
1.12.9
1.13
1.14

Using Multithreaded ProgrammingwithCTC
Creating a Multithreaded Program
Using the CTC Windows Socket Interface

Example Programs . . .

Compiling and Linking Your Program

Digital UNIX Client
HP-UX Client
OpenVMS Client. . .
OS/2 Client

SCO OpenServer Client
SCO UnixWare Client. e

Solaris Client.

Windows 3.1/3.11 Client.
Windows 95 and Windows NT Clients.
Changesto CTCfor Version 3.0,
Compatibility With Previous Versionsof CTC

2 CTC Routine Specifications

ctcAddMonitor.
ctcAnswerCall
CtcAssign
ctcAssociateData.
ctcCancelCall.
ctcConferencedoin. . . .
ctcConsultationCall. . .
ctcDeassign
ctcDeflectCall
CtcErrMsg
ctcGetAgentStatus . . .
ctcGetCallForward . . .

ctcGetChannellnformation.

ctcGetDoNotDisturb . .
ctcGetEvent.........
ctcGetMessageWaiting
ctcGetMonitor
ctcGetRouteQuery. . ..
ctcGetRoutingEnable .
ctcHangupCall.
ctcHoldCall
ctcMakeCall.
ctcMakePredictiveCall

1-14
1-14
1-15
1-16
1-16
1-16
1-16
1-17
1-18
1-18
1-18
1-19
1-19
1-20
1-21
1-22

2-2
2-6

2-15
2-17
2-18
2-20
2-24
2-25
2-27
2-29
2-31
2-33
2-38
2-39
2-56
2-57
2-58
2-62
2-64
2-65
2-66
2-68

ctePickupCall. 2-70
ctcReconnectHeld 2-72
ctcRemoveMoNitor. 2-74
ctcRespondTolnactiveCall 2-76
ctcRespondToOROUtEQUENYottt e e e 2-78
ctecRetrieveHeld. 2-80
CteSendDTME e 2-82
CLCSetAgeNntStatUS. 2-84
cteSetCallForward 2-87
ctcSetDoNotDisturb 2-89
ctcSetMessageWaiting i 2-90
CLCSEtMONITOr 2-91
ctcSetRoutingEnable. 2-93
cteSingleStepTransfer. 2-96
CteSNapshot 2-98
cteSwapWithHeld 2-100
ctcTransferCall 2-101
CteWINGetEVeNnt e 2-103
CtCWINGetROUtEQUENYo e 2-107
3 Errors and Conditions Returned
3.1 Mapping Errorsto Routines. 3-1
3.2 Source Of EXrOrs 3-1
3.3 Types of Errors Returned by the Switch 3-2
Part Il
A Features Common to All CTC Protocol/Switch Links
Al Common CTC FUNCLIONS.o e e A-4
A.2 MONITOFING e A-5
B Features Specific to the CSTA Protocol
B.1 Standard CTC Functions Supported by CSTA B-2
B.2 CECASSIgN . . e B-4
B.2.1 Supported DeVICeS. B-4
B.2.2 Extensiontothe CTC APl i B-4
B.2.3 Devices and Supported Routines B-4
B.2.4 Assigning to ODNs and ADNSs on Ericsson MD110 Digital Telephone

B-6

Vi

B.3
B.4
B.4.1
B.5
B.5.1
B.6
B.6.1
B.7
B.7.1
B.7.2
B.7.3
B.8
B.8.1
B.8.2
B.8.3
B.8.4
B.8.5
B.8.6
B.8.7
B.8.8
B.9
B.9.1
B.9.2
B.10
B.10.1
B.11
B.11.1
B.11.2
B.11.3
B.12
B.12.1
B.13
B.13.1
B.13.2
B.13.3
B.14
B.14.1
B.15
B.15.1
B.15.2
B.15.3
B.15.4

ctcAssociateData.
ctcConsultationCall.
Application Data
ctcDeflectCall
Application Data
ctcGetCallForward

Call-Forward Settings Returned
ctcGetChannellnformation.

Line Types..........
SetTypes...........

Switch-Specific Support
ctcGetEvent and ctcWinGetEvent.
Fields Used in the ctcEventData Structure.

Group Monitoring

Return Values for TransientStates.

Agent Events........
Call Event Qualifiers fo

rCSTA ..

Other, Third, and Called Party Qualifiers.

Party Information for C
Timestamp.

allEvents.

ctcGetRouteQuery and ctcWinGetRouteQuery.
Fields Used in the ctcRouteData Structure.

Timestamp.
ctcMakeCall.
Application Data
ctcMakePredictiveCall . .
Allocation Argument. .
Application Data
Number of Rings
ctcRespondToRouteQuery
Application Data
ctcSetAgentStatus.
Logging In Agents. . ..
Logging Out Agents ..

Agent Mode Not Supported

ctcSetCallForward

Supported Call-Forwarding Settings.
CTC Routines for CSTASwitches

Requirements
Format of Private Data
privateDataArray Argu
Private Data Routines

ment

B-7

B-7

B-8

B-8

B-8

B-8

B-9

B-9

B-9

B-9
B-10
B-10
B-10
B-12
B-12
B-12
B-15
B-19
B-19
B-24
B-25
B-25
B-26
B-26
B-26
B-27
B-27
B-27
B-27
B-28
B-28
B-28
B-28
B-28
B-29
B-29
B-29
B-29
B-29
B-29
B-30
B-55

CteCstaEscapeo B-56
ctcCstaGetPrivateData.ot B-59
ctcCstaGetPrivateEventData.o, B-61
ctcCstaGetPrivateRouteData. B-63
ctcCstaSetPrivateData i B-65
B.16 Condition ValuesReturned i B-67
C Features Specific to the Lucent DEFINITY Generic
Cl1 CTC Functions Supported by DEFINITY G3 Switches C-2
C.2 Lucent DEFINITY Software. i C-14
C.3 CLCASSIgN . . . C-4
Cc31 Supported DeVICeS. C-4
C.3.2 Assigning a Channel toa Route Point. C-4
C.3.3 Devices and Supported Routines C-4
o ctcCancelCall. C-6
c4.1 Device State. C-6
C5 cteDeflectCall C-6
C51 Required Software. C-6
C.5.2 Supplying ApplicationData C-6
C.6 CtcGetAgentStatus e C-7
C6.1 Supplying AgentData. C-7
Cc.7 cteGetCallForward C-7
c71 Call Forward Modes e C-7
C.8 ctcGetChannellnformation. C-7
cs8.1 Line TYpPeS . . oo C-8
Cc.8.2 St TYPES . . oo C-8
C.8.3 Switch-Specific Support C-8
C.9 ctcGetEvent and ctcWinGetEvent L C-8
c.o1 Fields Used in the ctcEventData Structure. C-8
C.9.2 Events Not Returned C-10
C.9.3 Information Returned for Channels Assigned to Route Points or
GrOUPS . . oot C-10
C.94 Events Returned for Channels Assigned to Groups C-11
C.95 Event Returned for Monitored Groups C-11
C.9.6 Agent Events. C-11
C.9.7 Party Type Information C-12
c.9.8 Party Qualifier C-12
C.9.9 Call Types . .o C-13
C.9.10 CallEventsandStates., C-14
Cc.9.11 Call Event Qualifiers for DEFINITY G3 Switches C-15
C.9.12 Mapping QualifierstoEvents C-17

Vi

C.9.13
C.9.14
C.9.15
C.10
C.10.1
C.10.2
C.10.3
C.10.4
cl1
C.l11
C.1l1.2
c.12
C.121
C.12.2
c.123
C.13
C.131
C.13.2
C.13.3
C.14
C.l141
C.15
C.151
C.15.2
C.15.3
C.16
C.1l6.1
Cc.17
cl71
C.18
c.181
c.18.2
C.19

Party Informationfor CallEvents. C-18
Application Datafor Events. C-21
TIMe Stamp C-21
ctcGetRouteQuery and ctcWinGetRouteQuery. C-22
Fields Used in the ctcRouteData Structure. C-22
otherPartyType and calledPartyType Fields. C-23
DTMFE DIgits . . .o e e e C-23
Time Stampo C-23
ctcHangupCall. C-23
Supported DeViCeS. C-23
Disconnecting Calls Made With ctcMakePredictiveCall. C-23
ctcMakeCall. C-24
Supported DeViCesS. C-24
On-Hook Dialing e C-24
Off-Hook Prompting C-24
ctcMakePredictiveCall C-24
Supported DeViCesS. C-24
Allocation. C-25
Number of Rings C-25
ctcRespondTOROUtEQUENY it e C-25
Dial-Ahead Digitso C-25
CteSetAgentStatus. C-26
Supported DeViCes. C-26
Logging In Agents on EAS Switches C-26
Logging In Agents on Non-EAS Switches Cc-27
ctecSetCallForward C-27
Supported Settings Cc-27
ctcSetDoNotDisturb C-27
Busy Signal C-28
CteSNapsShoto C-28
Required Software. C-28
Supported States. C-28
CTC Routine for the Lucent DEFINITY Switch................. C-28
CLCASAIGELACASTAtUS C-29

D Features Specific to Nortel Meridian Switches

viii

D.1
D.2
D.3
D.3.1
D.3.2

Meridian Switch Software D-2
Standard CTC Functions Supported by a Meridian Switch. D-2
Using CTC With Meridian Switches D-4
Configuring the Meridian Switch. D-4
Call Reference Identifiers. D-5

D.3.3
D.4
D.4.1
D.4.2
D.4.3
D.4.4
D.4.5
D.4.6
D.5
D.6
D.6.1
D.6.2
D.6.3
D.6.4
D.7
D.7.1
D.7.2
D.7.3
D.7.4
D.8
D.8.1
D.8.2
D.8.3
D.8.4
D.8.5
D.8.6
D.8.7
D.8.8
D.8.9
D.8.10
D.8.11
D.8.12
D.8.13
D.8.14
D.8.15
D.8.16
D.8.17
D.9
D.9.1
D.9.2
D.10
D.10.1

Switch Overload
ctcAssign

Supported DeVICES.o e
AssigningtoVoice Sets.
Assigning to ACD AgeNtSottt
Assigning to ACD Group Numbers
Assigningto Route Points.
Assigning to VoiceChannels

ctcCancelCall.
ctcConsultationCall

consultTypeValues.
callRefldand newCallRefld

applicationData.

ctcBadObjState Returned for Initiating a Call Transfer
ctcGetChannellnformation.

Line Type Values
Prime Values. . .
Set Type Values.

Switch-Specific Support
ctcGetEvent and ctcWinGetEvent..
Fields Used in the ctcEventData Structure.
Call Reference Identifiers Returned for Events

Call States.
Group Events. . .

Route Point Events.

Agent Events. . .

Call Events Not Supported.
Switch-SpecificCall Events
CallEventsand States,
Call Event Qualifiers

Call Types

Other, Third, and Called Party Information..................

Agent Modes . ..
DTMF Digits . . .

Originating Party Information.

Time Stamp.. ...

Party Informationand Events
ctcGetRouteQuery and ctcWinGetRouteQuery.
Fields Used in the ctcRouteData Structure.

Time Stamp.. ...
ctcMakecCall.
Application Data

D-6
D-6
D-7
D-8
D-9
D-9

D-10
D-10
D-11
D-11
D-11
D-11
D-11
D-12
D-12
D-12
D-12
D-12
D-13
D-13
D-15
D-15
D-15
D-15
D-15
D-15
D-16
D-16
D-17
D-20
D-21
D-21
D-22
D-22
D-22
D-23
D-26
D-26
D-27
D-27
D-27

D.10.2
D.11

D.11.1
D.11.2
D.11.3
D.12

D.12.1
D.12.2
D.13

D.13.1
D.14

D.14.1
D.14.2
D.14.3
D.14.4
D.14.5
D.15

D.15.1
D.15.2
D.15.3
D.15.4
D.15.5
D.16

Index

Tables

NUE
NFPOBRWNER

Call Reference Identifier.
ctcRespondToRouteQuery
Responding to Route Queries...........

Delayed ROULING oot e
Application Data
CLCSetAgeNntStatus.

agentMode
agentData and logicalAgent............

ctcSetCallForward
forwardMode
cteSingleStepTransfer.

Switch Software Required

callRefld.
newCallRefld. e
Supported DeViCes.
applicationData. e
ctcTransferCall
500 and 2500 SetSt
activeCallRefld e
heldCallRefld e i
newCallRefld. e

ctcBadObjState Returned for Call Transfer
CTC Routines for Meridian Switches
ctcMIpCloseVoiceFile

ctcMIpCollectDigits. oo

ctcMlIpLogoffMailBox
ctcMlIpLogonMailBox
ctcMIpOpenVoiceFile

CtcMIpPlayMessage.ot

Controlling the Communications Channel

Telephony Functions
CTC Data TYPeS . . ottt e e

C Definitions Files
Summary of Changes to CTC for V3.0 ...

Consult Type Values for ctcConsultationCall

Agent Mode Values for ctcGetAgentStatus

D-27
D-27
D-27
D-28
D-28
D-28
D-29
D-29
D-30
D-30
D-30
D-30
D-30
D-30
D-31
D-31
D-31
D-31
D-31
D-31
D-31
D-32
D-32
D-33
D-34
D-37
D-38
D-40
D-42

1-2
1-4

1-11
1-21
2-22
2-30

WNNNNNNNNNNNNDNDN
PRRPRRPRPRPRPRPEPROO~N®TDR®
OUNWNRO

00 WWoWwWwowwoww>
©CO~NOORNWNPRP

\ICDU'IwaH@CD\ICDU'IwaHIS

vlvivivivivivNoNeo NN NONONONONE!

ctcGetCallForward Modes Returned 2-32

Call States Returned by ctcGetEvent 2-43
Agent Events Returned by ctcGetEvent 2-44
Call Events Returned by ctcGetEvent 2-44
Other Party Information. 2-47
Third Party Information. 2-48
Called Part Information i 2-49
Originating Party Fields 2-52
Queue MoNItoring 2-55
Information Returned by ctcGetRouteQuery 2-60
Response Values for ctcRespondTolnactiveCall 2-77
Agent Mode Values for ctcSetAgentStatus 2-85
Call Forward Values for ctcSetCallForward 2-88
Information Returned by ctcWinGetRouteQuery 2-110
Condition Values Returned 3-3
Protocol/Switch-Specific Support for CTC Routines A-2
CTC Functions Specificto CSTA i B-2
Routines Supported for CSTA Switches B-4
Event Information Supported by CSTA Switches B-10
Agent Event Information Returned by CSTA Phase | Switches .. B-13
Agent Event Information Returned by CSTA Phase Il Switches . B-14
Call Event Qualifiersfor CSTA B-15
CSTA Party Information for Call Events B-19
Route Information Supported by CSTA Switches B-25
Private Data Type Values B-32
Data Types Supported by Private Data Routines B-34
CTC Routines for DEFINITY G3 Switches C-2
Routines Supported for DEFINITY G3 Devices C-5
Event Information Supported by DEFINITY Switches C-8
DEFINITY Call Types e C-13
Call Events and StatesReturned C-14
Call Event Qualifiers for DEFINITY G3 Switches C-16
DEFINITY Event Information Returned C-17
DEFINITY Party Information for Call Events C-18
Route Information Supported by DEFINITY G3 Switches C-22
Meridian Software and Supported CTC Features. D-2
CTC Routines and Meridian Switches D-3
Routines Supported for Meridian Devices D-7
Event Information Supported by Meridian Switches D-13
Call Events and StatesReturned D-16
Call Event Qualifiers for Meridian Switches D-18
Meridian Party Information for Call Events D-23

xi

Xii

D-8

Route Information Supported by Meridian Switches

About This Manual

This manual contains detailed descriptions of CT-Connect (CTC) Application
Programming Interface (API) routines. It provides guidelines for using these
routines and includes details of the operational differences for specific switches
and CTC client platforms.

Audience

This manual is for programmers writing applications that use a link between a
CTC server (a system running the CTC Server software) and a switch to provide
users at client systems with computer-integrated telephony facilities.

It assumes that programmers are familiar with:

= Writing programs in Visual Basic™ or C. All CTC routines described in this
manual are shown in C format. However, language-specific definitions files
are provided in both C and Visual Basic.

= The CTC concepts described in the CT-Connect Introduction.
= Compiling and linking programs on the appropriate CTC client operating
system.

Associated Documentation

CT-Connect Documentation

In addition to this manual, the following documents are included in the CTC
documentation set:

e CT-Connect Introduction — This manual provides an overview of CTC and
includes example configurations.

« CT-Connect Installation and Administration Guide for your CTC server
platform — This manual describes how to install the CTC Server and the
CTC API software on supported platforms. It also describes administration
tasks and provides basic problem solving procedures.

Xiii

= CT-Connect Release Notes — These online notes provide information about
changes to the CTC software and/or documentation at the time of release.
They are installed on the CTC server. For details of their location, refer to the
CT-Connect Installation and Administration Guide for your CTC server
platform.

Dialogic Web Site

For more information about CT-Connect, and other Dialogic products, visit
Dialogic’'s web site at http://www.dialogic.com.

Switch Documentation

Refer to the documentation supplied with the switch for details of features, and
any limitations that may affect the operation of the CTC software.

Terms and Definitions

The following terms are used throughout this manual:

Term Definition

Windows 3.1/3.11 Refers to Microsoft® Windows™ 3.1, Windows 3.11, and Windows for
Workgroups 3.11.

OpenVMS Refers to the OpenVMS™ VAX™ and OpenVMS Alpha operating systems.

0S/2 Refers to the OS/2 Warp™ operating system.

CTC client A supported system running the CTC API software.

CTC server A supported system running the CTC Server software.

Communications link The logical link between the CTC server and the switch.

Switch The telephony switching device. For example, a Private Branch Exchange
(PBX), Private Automatic Branch Exchange (PABX) or central office switch.

Xiv

Conventions

The following conventions are used throughout this manual:

Convention Meaning

courier This typeface is used for code examples or interactive examples to indicate
system input/output.

drive: Italic (slanted) typeface indicates variable values, placeholders, and
arguments.)

C\> The MS-DOS® and OS/2™ command prompt. The actual prompt may vary
depending on your current drive and default directory.

The Digital™ UNIX®, HP-UX®, SCO OpenServer™, SCO® UnixWare®, and
Sun™ Solaris™ command prompt.

$ The OpenVMS command prompt.

XV

XVi

Part |

Part I describes how to use CTC programming routines and gives detailed
descriptions of the routines.

1

Introduction

This chapter provides an overview of the CT-Connect (CTC) Application
Programming Interface (API) routines. It describes the mechanisms and data
structures you use to call CTC routines, describes how to use multithreaded
programming with CTC, and provides guidelines for linking your programs.

1.1 CTC API Routines

CTC is a software toolkit for developing and running telephony applications.
This section summarizes the functions that are available through CTC. For
detailed information about the individual routines, refer to Chapter 2.

There are three groups of routines:
= Routines that control the communications channel
= Routines that perform telephony functions

= Switch-specific routines

1.1.1 Routines That Control the Communications Channel

The group of routines listed in Table 1-1 give you control of the communications
channel between the user’s application and a specific telephony device. Using
the routines, you can:

= Assign and deassign logical communications channels to and from devices.
= Set and query certain characteristics for a device.
= Monitor telephony events for the device.

Monitoring Events

To receive event information for a device, you monitor the assigned channel to
the device. Event information includes details of the current state of the device
every time a significant event occurs on a channel.

Introduction 1-1

1-2

If the current state of a device is known, the telephony features available at any
one time can be predicted. For example, if there is a call active on a device, then
you can present the user with the option to transfer the call.

Status messages consist of a combination of the following information:
= Current state

= Most recent event

= Identity of other parties

= Network information, for example, Dialed Number Identification Service
(DNIS) or Automatic Number Identification (ANI)

This information allows you to build up and maintain the context for a sequence
of calls. For example, you can keep track of a number of calls associated with a
monitored device as the user swaps between active calls and calls on hold, or
perhaps transfers a call on hold.

You can also receive event information on a monitor channel. A monitor channel
is a single, logical channel that your application can create to monitor, but not
control, multiple devices. By assigning to a monitor channel, your application
can receive on one channel, call data, status, and party information for a number
of devices. Your application can use this information, for example, to record
statistics for a specific agent group.

Table 1-1 Controlling the Communications Channel

Function Routine

Assign a communications channel to a device, and ctcAssign
identify the channel uniquely to the application. The
device can be a telephone, or a logical entity such as an

ACD queue.

Assign a monitor channel so that you can monitor a ctcAssign

number of devices on a single channel.

Receive event information for a device on a monitor ctcAddMonitor
channel.

Stop monitoring a device on a monitor channel. ctcRemoveMonitor
Deassign a channel from its associated device, and ctcDeassign

release resources associated with the channel.

Return information about the communications channel ctcGetChannellnformation
and the device to which the channel is assigned.

Introduction

Table 1-1 Controlling the Communications Channel (Continued)

Function Routine

Return the number of calls at the device or in a queue, ctcSnapshot

and query the state of those calls.

Set status for an ACD agent so that they can log on or ctcSetAgentStatus

log off as an ACD agent and set the agent mode (for
example, “ready to take calls”).

Set forwarding on for a device so that incoming calls are
redirected to another device.

Set Do-Not-Disturb for a device so that incoming calls do
not ring at the device.

Set the message waiting indicator on or off.

Set the monitoring state of the assigned device on or off.
Use this routine with the ctcGetEvent or
ctcWinGetEvent routine to receive information on the
state of calls associated with a device.

Enable or disable routing for the assigned route point.
When routing is enabled, the switch passes route
requests to CTC for incoming calls made to the assigned
route point. The application can receive the route
requests by using ctcGetRouteQuery or
ctcWinGetRouteQuery, and can use
ctcRespondToRouteQuery to specify a new destination
for the incoming call.

Show whether the switch passes route requests to CTC
when a call reaches the assigned route point.

Return current information on the status for an agent.
Return current information about call forwarding.

Return current information about the Do-Not-Disturb
status.

Return the status of the message waiting indicator.

Return information about the current monitoring state
of the assigned device.

Return details of a condition value in text.

ctcSetCallForward

ctcSetDoNotDisturb

ctcSetMessageWaiting

ctcSetMonitor

ctcSetRoutingEnable

ctcGetRoutingEnable

ctcGetAgentStatus
ctcGetCallForward
ctcGetDoNotDisturb

ctcGetMessageWaiting
ctcGetMonitor

ctcErrMsg

Introduction

1-3

Table 1-1 Controlling the Communications Channel (Continued)

Function Routine

Return information on telephone calls associated with ctcGetEvent or
the assigned device: ctcWinGetEvent

« Call states, such as initiate or active
e Call events, such as answered or transferred
= Call references (identifiers for calls)

= Other parties involved in the telephone call, and
network information such as ANI or DNIS

Associate data with a call (for example, customer ctcAssociateData
reference information)

Refer to Chapter 2 for detailed information on these routines.

1.1.2 Routines for Telephony Functions

Table 1-2 lists the telephony functions provided by the CTC API on a channel
assigned to a device, and the routines that perform those functions.

Table 1-2 Telephony Functions

Telephony Function Routine

Make a telephone call from the device to which the ctcMakeCall
channel is assigned.

Answer an incoming call on a hands-free feature ctcAnswerCall

telephone.

Pick up a call from another extension. ctcPickupCall
Clear the active call on the assigned device. ctcHangupCall
Put the current call on consultation hold. ctcHoldCall

Make a call to a third party to whom you intend to ctcConsultationCall
transfer the current call on the assigned device, or
to include all parties in a conference call.

Complete a transfer call, and disconnect the ctcTransferCall
assigned device.

Make a call and transfer the call without placing ctcSingleStepTransfer
the calling party on hold (unsupervised transfer).

1-4 Introduction

Table 1-2 Telephony Functions (Continued)

Telephony Function

Routine

Merge two or more calls into a single conference
call.

Disconnect a consultation call.
Retrieve a call that is on consultation hold.

Disconnect a consultation call and retrieve the
held call.

Swap the active call with the call on consultation
hold.

Deflect a call ringing on the assigned device to
another extension.

Notify a busy destination of the presence of your
call, so that when the destination device finishes
its current call, and your call is first in the queue,
you are automatically connected. This is called
camping on.

Barge in (also called intrude) on an existing call.

Get the switch to ring the assigned device back as
soon as an extension that was previously busy
becomes free.

Present a call to the call-center application so that
it can decide to which device the call needs to be
routed.

Route the incoming call to a destination chosen by
the application.

Allow a virtual party on a switch to initiate calls
on behalf of a user. Only when the called device
answers, (or, for example, the telephone rings a
preconfigured number of times) does the call get
put through to the user.

Send DTMF (Dual-Tone Multi-Frequency) digits
to simulate a user pressing keys on a touch-tone
telephone.

ctcConferenceJoin

ctcCancelCall
ctcRetrieveHeld

ctcReconnectHeld

ctcSwapWithHeld

ctcDeflectCall

ctcRespondTolnactiveCall

ctcRespondTolnactiveCall

ctcRespondTolnactiveCall

ctcGetRouteQuery or
ctcWinGetRouteQuery

ctcRespondToRouteQuery

ctcMakePredictiveCallt

ctcSendDTMF

1This may require external tone detection devices

Introduction

1-5

1.1.3 Switch-Specific Routines

In addition to the standard CTC routines listed in Table 1-1 and Table 1-2, CTC
provides some switch-specific routines.

These additional routines are provided as extensions to the CTC API and they
enable your application to access features that are specific to a particular switch.

For example, your application can call the ctctMIpPlayMessage routine which is
provided as a CTC API extension for the Nortel™ Meridian™ switches. This
routine plays a voice message on a Meridian Mail system (see Section D.16 for
more information).

You specify whether you want to use switch-specific routines when you assign a
channel with the ctcAssign routine. See the description of ctcAssign in Chapter 2
for more information.

For this version of CTC, switch-specific routines are available for:

= Switches supporting CSTA Phase | and Phase Il (see Appendix B)
e Lucent DEFINITY® G3 (see Appendix C)

= Nortel Meridian switches (see Appendix D)

For more information about future CTC API extensions, contact Dialogic.

1.2 Sequence for Calling CTC API Routines

1-6

To establish and control a logical channel to a device, and to receive information
about activity on that device, call CTC routines in the following sequence:

1. ctcAssign to assign the channel to the device.

2. Routines that set characteristics for the device, such as ctcSetAgentStatus or
ctcSetCallForward.

3. ctcSetMonitor routine to set monitoring on.

4. ctcGetEvent or ctcWinGetEvent routine to monitor the channel and device
while the application is making and receiving telephone calls.

Following this sequence, you can call any other CTC API routines.

If a routine is not successful, you can use ctcErrMsg to interpret the returned
value. Refer to Chapter 2 for more information.

At the end of a user’s session, when they have finished using the CTC
application, ctcDeassign must be used to deassign the channel from the device.

Introduction

1.3 Format of Routines

Chapter 2 describes each routine in detail, including:
= The format of the routine (written in C)
< A summary of the arguments passed to the routine
Arguments passed to a routine must be listed in your program in the same order
as that shown in the format section.
1.3.1 Unsigned Integers and Windows 3.1/3.11

With the exception of ctcErrMsg, the format section for each routine in
Chapter 2 shows status returns as 32-bit unsigned integers. On
Windows 3.1/3.11, this is the equivalent of an unsigned longword.

If you are writing a Windows 3.1/3.11 program, use unsigned longwords
wherever the format section or argument for a routine requires a 32-bit
unsigned integer.

1.4 Use of Arguments

The Arguments section of a routine description describes the use of each
argument. Each argument has three characteristics: data type, access type, and
passing mechanism. For example, the channel argument has the following
characteristics:

channel
type: ctcChanld
access: read only

mechanism: by value

Section 1.4.1 to Section 1.4.3 describe these characteristics.

1.4.1 Data Type

When a calling program passes an argument to a CTC routine, the routine
expects the argument to be of a particular data type. The type entry indicates the
type of data used for an argument. CTC uses the following standard data types:

= Byte (unsigned) — 8 bits

= Word (unsigned) — 16 bits

= Integer (unsigned) — 32 bits (unsigned longword on Windows 3.1/3.11)
e Character string — Array of NUL-terminated bytes (signed)

Introduction 1-7

CTC arguments can also be structures, unions, or arrays of these data types.
These are described in Section 1.4.1.1 to Section 1.4.1.3. Section 1.4.1.4
summarizes the data, structures, unions, and arrays defined in CTC definitions
files.

1.4.1.1 Data Structures

Some CTC arguments are addresses of data structures. A data structure is a
block of memory that contains a series of fields of predefined offsets. Each of
these structures has a fixed format that is defined in a CTC definitions file

installed on your system (see Section 1.5, for more information about definitions
files).

There are two types of structure:

= An input structure requires the application to pass information to the CTC
API for one or more of the defined fields. For example, the ctcAssign routine
requires the application to provide the dialable number (the directory
number or extension number) of a telephone device. CTC has read-only
access to the content of an input structure.

= Output structures are used to provide the application with information. The
application program passes to CTC the address of a block of memory for the
structure. CTC writes information into the structure for the application to
read. CTC has write-only access to the content of an output structure.

For example, CTC provides channel information in the ctcChanData
structure for the ctcGetChannellnformation routine.

1.4.1.2 Unions

A union is an object that contains, at different times, any one of several elements
of different types. For example, the privDataValue union contains an element
that identifies the type of data passed with the ctcCstaEscape routine. Refer to
Appendix B for details of this routine.

1.4.1.3 Arrays

An array is a sequence of data elements. For example, the callData argument for
the ctcSnapshot routine is an array of up to 32 structures. For more information,
refer to the description of ctcSnapshot in Chapter 2.

1-8 Introduction

1.4.1.4 CTC Data Type Definitions

Table 1-3 provides a summary of CTC-defined data types.

Table 1-3 CTC Data Types

Data Type

Description

ctcAccountinfo

ctcApplString

ctcAssignData

ctcCallData
ctcChanData

ctcChanld

ctcDeviceString

ctcEventData

ctcLogldString

ctcLpvASB

ctcNameString

ctcNetString

ctcRouteData

An array of bytes used to provide account information
associated with a call.

A character string that contains application data, for
example, customer reference information. The maximum
length of the string is specified by the literal ctcAppDatalLen
defined in a CTC definitions file.

A structure used to pass information required to create a
channel to a device.

A structure used to pass a reference and a state for a call.

A structure used to pass information about the assigned
channel.

A pointer to a fixed structure used to identify the assigned
channel.

A character string usually containing the number for a device,
for example, a DN. The maximum length for ctcDeviceString
is specified by the literal ctcMaxDnLen defined ina CTC
definitions file.

A structure used to pass information relating to an event on
the assigned channel.

A null-terminated character string containing the logical
identifier for the link between the CTC server and the switch.

A Windows 3.1/3.11 structure containing information relating
to an event on the assigned channel.

A null-terminated character string containing the network
name or address for the CTC server. The maximum length for
ctcNameString is specified by the literal ctcNodeNameLen
defined in a CTC definitions file.

A null-terminated character string that identifies the network
protocol used between the CTC client and CTC server. The
maximum length for ctcNetString is specified by the literal
ctcNetLen defined in a CTC definitions file.

A structure containing information relating to a call
presented to the application for routing.

Introduction 1-9

Table 1-3 CTC Data Types (Continued)
Data Type Description

ctcTimeStamp A structure containing details of the time an event or route
request occurred.

Additional data types are used for switch-specific routines. For details of these
data types, refer to the switch-specific appendixes.

1.4.2 Access to Data

The access entry indicates whether CTC:
= Reads data passed to it by the application (read only)
= Returns data to the application (write only)

= Reads data from the application and returns data to the application (read
and write)

1.4.3 Passing Mechanism

The mechanism entry indicates whether the application passes data to the CTC
routine by reference or by value:

< By Value

When your program passes an argument by value, the argument entry
contains the actual, uninterpreted value of the argument. The by value
mechanism is usually used to pass constants. For example, to pass the
constant 100 by value, the calling program puts 100 directly into the
argument list.

= By Reference

When your program passes an argument by reference, the argument entry
contains the address of the location that contains the value of the argument.
For example, if variable x is allocated at location 2000, which currently
contains the value 100, the argument entry will contain 2000.

1.4.4 Passing Optional Data

1-10

For some arguments, passing data is optional. This means that you must still
include the argument in your program but, depending on the passing
mechanism, you can specify the value zero (0) or the address of a zero-length
character string with the argument instead of data.

For example, the calledNumber argument for ctcPickupCall is the address of a

Introduction

character string that identifies the ringing device. You can specify the address of
a zero-length character string with this argument to indicate that the call is
being picked up from the local group.

The passing mechanism for the argument determines what you specify instead
of the described data:

If the argument is passed by value, specify zero (0) instead of the described
value.

If the argument is passed by reference and provides input to CTC, specify the
address of a null data type, for example, a zero-length character string.

If the argument is passed by reference and obtains output from CTC, supply
enough memory to accommodate that argument’s output.

To find out if you need to pass data with an argument, refer to the routine
descriptions in Chapter 2.

1.5 Definitions

CTC supplies language-specific definitions files for constants, condition values,
and data structures:

If you are writing an application in C, you can include one definitions file,
CTCDEF.H, in your program. This file includes files CTC_ERR.H,
CTC_CODE.H, and CTC_RPC.H or CTCWIN16.H. Table 1-4 shows the
contents of these files.

Table 1-4 C Definitions Files

File Client Platforms
Constants
CTC_CODE.H All

Condition Values for Status Returns
CTC ERR.H All

Data Structures

CTC_RPC.H Digital UNIX, HP-UX, OpenVMS, 0S/2, SCO OpenServer,
SCO UnixWare, Solaris, Windows 95, Windows NT™
CTCWIN16.H Windows 3.1/3.11

If you are writing an application in Visual Basic, you can include one

Introduction 1-11

definitions file, CTCDEF.BAS, in your program. This file includes all CTC
definitions for Windows 3.1/3.11, Windows 95, and Windows NT.

Definitions files are copied to the directory that you specify during installation.
For details of the location of the files, refer to the CT-Connect Installation and
Administration Guide for your CTC server platform.

1.6 Condition Values for Status Returns

Each CTC routine returns a condition value (32-bit unsigned integer) as a
completion code to indicate whether the call to the routine has been successful or
whether an error has occurred.

Dialogic recommends that you always check the return status to determine
success or failure of calls to CTC routines, and choose a suitable recovery path if
there is an error.

For an explanatory list of the condition values that can be returned by CTC
routines, refer to Chapter 3. Future versions of CTC may include additional
values, so you should ensure that your application can handle future additions
to the condition values.

1.6.1 Link Problems

If the link to the switch has gone down or reset, the CTC server:

= Clears all monitors and cancels any outstanding ctcGetEvent,
ctcWinGetEvent, ctcGetRouteQuery, and ctcWinGetRouteQuery requests,
returning a status of ctcLinkDown or ctcLinkReset.

= Returns a ctcLinkDown or ctcLinkReset condition value for outstanding or
new API function calls until the link is re-enabled.
1.7 Exception Handling

A network problem that affects communication between the CTC client and
CTC server may result in a Remote Procedure Call (RPC) exception.

The CTC API does not handle RPC exceptions automatically, so, Dialogic
recommends that your application handles this type of exception. For details of
how to do this, refer to the RPC programming documentation for your operating
system.

1.8 Calling CTC Routines

All CTC routines operate synchronously. This means that they return to the

1-12 Introduction

caller only when the operation is complete.

Waiting for each operation to complete may be inappropriate for your
application. For example, your application can use the ctcGetEvent routine to
return information on telephone calls associated with the assigned device. This
routine does not complete until there is activity on the assigned device. For your
application to continue with operations, you must call CTC routines in a
multithreaded program.

Multithreaded programming enables routines to be processed concurrently
rather than in sequence. This means that applications are not blocked as they
wait for operations to complete; operations that are asynchronous in nature can
be performed in parallel with operations that are synchronous.

1.9 CTC and Multithreaded Programming

The following sections provide an overview of threads and multithreaded
programs for applications that require both synchronous and asynchronous
operations.

Note that you do not need to create a multithreaded program if:
= Your application uses only synchronous operations.

= You are writing a Windows 3.1/3.11 application. ctcWinGetEvent and
ctcWinGetRouteQuery are non-blocking routines that allow a
Windows 3.1/3.11 application to receive information for the assigned device.
See Section 1.10 for more information.

1.9.1 Threads

A thread is a separate, sequential flow of control within a program. It is the
movement of a processor through a program’s instructions.

1.9.2 Multithreaded Programming

Most traditional programs consist of a single thread. In a multithreaded
program, multiple threads are created to execute different parts of a program.
This enables a program to overlap activities.

Threads in a multithreaded program share the address space, memory (except
for stacks and register contents), and other resources provided by a single
process. When the process is created, a single thread is created and used by the
program. This is the main thread. From this thread, the program can create
another thread, for example, for an operation that needs to wait for input from
another device. It continues to perform more immediate work using the main

Introduction 1-13

thread.

If the program has a number of operations to perform, it can create additional
threads from the main thread as they are required.

1.9.3 Thread Execution

A processor executes a thread until the thread has to wait, for example, for a
resource to become available, or for synchronization with another thread. At this
point, the processor starts to run another thread. The processor continues in this
way, executing one thread and then another.

No complicated data-passing mechanisms are required for one thread to
communicate with another thread. A thread writes its output to memory and
another thread can read it as input. When one thread has completed a task, it
uses an indication mechanism (for example, a condition variable) to let the other
thread know that the input data is ready.

1.9.4 Using Multithreaded Programming with CTC

Using multithreaded programming, a CTC application can complete both of the
following activities:

= It can use the main thread (the thread created at the same time as the
process) for all synchronous operations. For example, calling the ctcMakeCall
routine.

= It can create another thread for monitoring the device. This operation is
asynchronous in nature because the application waits for activity on the
assigned device.

There are two routines that return information only when there is call activity,
ctcGetEvent and ctcGetRouteQuery. Dialogic recommends that you create a
separate thread for each of these routines if you use them in your program.

The online CTC application shows how multithreaded programming is used.
This example application is installed as part of the CTC client software Kkit. For
details of the location of the example application, refer to the CT-Connect
Installation and Administration Guide for your CTC server platform.

1.9.5 Creating a Multithreaded Program

1-14

The procedure for creating threads in your program depends on the operating
system you are using. For some operating systems, you may need to obtain a
threads package.

For information about creating and using threads, refer to the application

Introduction

development documentation for your operating system:

< On Windows NT or Windows 95 systems, refer to the development
documentation provided with your system. Threads are provided as part of
the operating system for these platforms.

e On SCO UnixWare and SCO OpenServer systems, you can use DCE Thread
Library routines. For more information, refer to the documentation provided
with the SCO DCE Executive and SCO DCE Development System software.

= On Digital UNIX and OpenVMS systems, you can use the DCE Thread
Library routines. These routines are described in the Digital DCE
Application Development Reference manual.

= On HP-UX systems, you can use DCE Thread Library routines. For more
information, refer to the documentation provided with the HP® DCE
Runtime Services software.

= On Solaris systems, for details of DCE threads, refer to the documentation
provided with the Transarc® DCE Version 2.0 for Solaris 2.6 software.

= On 0S/2 systems, you can use DCE Thread Library routines. For more
information, refer to the IBM Distributed Computing Environment 2.1 for
0S/2 Warp: Application Development Guide. This guide is supplied online as
part of the DCE Application Program Development Toolkit. The toolkit is
available with the IBM® Directory and Security Server for OS/2 Warp
software.

1.10 Using the CTC Windows Socket Interface

The CTC Windows Socket interface is installed with the CTC API on systems
running Windows 3.1/3.11. It enables CTC applications running on these
systems to use ctcWinGetEvent and ctcWinGetRouteQuery. These are
non-blocking routines that return information for the assigned device. For more
information, refer to the description of these routines in Chapter 2.

Note that ctcWinGetEvent and ctcWinGetRouteQuery are available on systems
running Windows 3.1/3.11 only. If you are writing a Windows NT or Windows 95
application, you must use ctcGetEvent and ctcGetRouteQuery to receive event
and routing information.

Introduction 1-15

1.11 Example Programs

The following examples are installed during the CTC API installation procedure:

Example Description

CTC_EXP.C This file shows how to use the ctcAssign, ctcSetMonitor, and
ctcGetEvent routines. It is available on all supported client
platforms except Windows 3.1/3.11.

CTC Demo This example application is installed on Windows NT and
Windows 95 clients. The CTC API installation procedure installs
source files in addition to the executable file.

Phone Watch This example application is installed on Windows 3.1/3.11
clients. The CTC API installation procedure installs source files
in addition to the executable file.

For details of the location of these files, refer to the CT-Connect Installation and
Administration Guide for your CTC server platform.

1.12 Compiling and Linking Your Program
Section 1.12.1 to Section 1.12.9 contain platform-specific information about

compiling and linking your program.

1.12.1 Digital UNIX Client

On an Digital UNIX client, the CTC client is provided as the shareable object,
/usr/shlib/libctc_api.so. You include this shareable object as input when you link
your program to create an executable image.

To compile your program, you use the cc -c command. For example:

cc -c ctc_prog.c

where ctc_prog.c is source code written in C.

To link your program, you use the cc command and -1 to specify the shareable
object, dce, pthreads, ¢_r, and mach objects. For example:

cc -0 ctc_prog ctc_prog.o -lctc_api -ldce -Ipthreads -lc_r -1nach
where ctc_prog.o is the compiled program and ctc_prog is the executable image.

1.12.2 HP-UX Client
On a CTC client running HP-UX, the CTC API is provided as the shareable

1-16 Introduction

library, libctc_api.sl. You include this shareable library as input when you link
your program to create an executable image.

For example, to compile a program written in C, you use:

cc -c -0 ctcprog.o -Ae +O4 -1/ usr/include/reentrant \
- D_REENTRANT ct cprog. ¢

where ctcprog.o is the name you give to the output (the compiled program) and
ctcprog.c is source code written in C.

To link a program written in C, you use:

1d ctcprog.o /liblcrt0.0 -0 ctcapp -s -Bi medi ate -Bnonfatal \
-lctc_api -Ibb -ldce -Im-lc_r

where ctcprog.o is the compiled program and ctcapp is the executable image.

1.12.3 OpenVMS Client

On an OpenVMS client, the CTC client is provided as the shareable image,
SYS$SHARE:CTC_API.EXE. You include this shareable image as input to the
linker.

Compile your program in the usual way and then complete the following
procedure to link your image:

1. Create an options file that contains the following:
SYS$SHARE: CTC_API . EXE/ SHAREABLE

Depending on the language you are using, you may also need to identify the
Run-Time Library shareable image in the options file. For example, you
create the following options file for a program written in C:

SYS$SHARE: CTC_API . EXE/ SHAREABLE
SYS$SHARE: VAXCRTL. EXE/ SHAREABLE

where VAXCRTL.EXE is the shareable image for the VAX C Run-Time
Library.

For more information, refer to your language-specific programming utilities
documentation.

2. Use the LINK command to link your image:
$ LINK ctc_program filename. OPT/ OPTI ON, DCE: DCE. OPT/ OPT | ON

where ctc_program is your compiled program and filename.OPT is the name
of your options file. DCE.OPT is the DCE options file.

Introduction 1-17

1.12.4 OS/2 Client

The following is an example command use to compile a program on a CTC client
running OS/2:

icc ctprog.c /Gm /Sud /Ms /C+ /Sem -D CV5_PROTO_ - D_CVA_NOARAPPERS
- DCVA_UNI PROCESSOR - DI NTEL80x86 - | DBMOS2

where ctprog.c is source code written in C. This produces a compiled program
ctprog.obj.

The following example shows how to link the CTC program:

ilink ctprog.obj /E [NJO /NCE /ST:100000 /O ctprog ctapi.lib
dceos2.lib 0s2386.1ib

where ctprog.obj is the compiled program and ctprog is the executable image.

1.12.5 SCO OpenServer Client

On a CTC client running SCO OpenServer, the CTC API is provided as the file
libctc_api.a. You include this file when you link your program to create an
executable image.

The following example shows how to compile a program on a CTC client running
SCO OpenServer:

cc -c -0 ctcprog.o -belf ctcprog. c

where ctcprog.o is the name you give to the output (the compiled program) and
ctcprog.c is source code written in C.

To link your program, you use:

1d ctcprog.o /lib/crt0.o -0 ctcapp -s -lctc_api -ldce -lcma -Im\
-1 socket -lc

where ctcprog.o is the compiled program and ctcapp is the executable image.

1.12.6 SCO UnixWare Client

On a CTC client running SCO UnixWare, the CTC API is provided as the
shareable object, libctc_api.so. You include this shareable object as input when
you link your program to create an executable image.

The following example shows how to compile a C program on SCO UnixWare:
cc -c -Kpic, thread ctcprog.c

where ctcprog.c is CTC source code written in C.

1-18 Introduction

The following example shows how to link the program:

#1d -s -Bdynamic -o ctcapp /usr/ccs/lib/crt0.0 ctcprog.o \
-lctc_api -ldce -lc

where ctcapp is the executable image and ctcprog.o is the compiled program.

1.12.7 Solaris Client

On a CTC client running Solaris software, the CTC API is provided as the
shareable object, libctc_api.so. You include this shareable object as input when
you link your program to create an executable image.

The following example shows how to compile a C program on Solaris:
cc -c -D _REENTRANT -Dsparc -Kpic ctcprog. c

where ctcprog.c is CTC source code written in C.

The following example shows how to link the program:

#1d -s -0 ctcapp /opt/ SUN\Wspro/ SC3.0.1/1ib/crt0.0 ctcprog. o \
-lctc_api -ldce -lc -Inls -lthread -Im

where ctcapp is the executable image and ctcprog.o is the compiled program.

1.12.8 Windows 3.1/3.11 Client

Dialogic recommends that when you compile a CTC program on a system
running Windows 3.1/3.11:

= You copy the following header files to your INCLUDE directory:

CTCDEF.H
CTC_CODE.H
CTC_ERR.H
CTCWIN16.H

= You use the large memory model.
You can link your program using one of the following methods:

= Implicit Import — This gives you access to all the CTC routines by including
the import library in the linker command.

< Dynamic Run-Time Import — This allows access to only the routines you
specify within your application code.

Implicit Import
To link your application with CTC, copy the CTC import library CTC_API.LIB to

Introduction 1-19

your library directory, and include it in the linker command file. For example:

|'ink /NOD/ CO ctcapp. obj,, ctcapp. map/ map, | i bw | |'i bcew
ctc_api.lib, ctcapp. def

Dynamic Run-Time Import
Dynamic Run-Time Import eliminates the need for you to link your program

with the CTC import library. Your application first loads the CTC import library,
and then retrieves the address of the CTC functions you specify.

For example, to call the ctcHangupCall routine:

HANDLE hLi brary;
FARPROC | pFunc;

hLibrary = LoadLibrary (‘CTC_API.DLL");
if (hLibrary >= 32)
{

IpFunc = GetProcAddress (hLibrary, “ctcHangupCall”);
if (IpFunc !'=(FARPROC)NULL)

(*lpFunc) (hChan);
FreeLibrary (hLibrary);

1.12.9 Windows 95 and Windows NT Clients

This section contains information about compiling and linking your program on
a Windows 95 or Windows NT system.

Calling Convention for Linking

CTC API functions conform to the stdcall calling convention for C and C++
programs. To link and run CTC applications, CTC provides stdcall-compatible
files CTCAPI32.DLL and CTCAPI32.LIB.

For details of the location of these files, refer to the CT-Connect Installation and
Administration Guide. For more information about the stdcall calling
convention, refer to your C or C++ documentation.

Multithreaded Programs and Thread Stack Size
If you create threads in your program, note the following:

< On Windows 95 systems, if you encounter problems with virtual memory, try
reducing the thread stack size when you link your program. For more
information, refer to your Windows 95 documentation.

< On Windows NT systems, Dialogic recommends that you use a thread stack
size of no more than 64 Khytes when you link your program. The default
thread stack size on Windows NT systems is 1 Mbyte.

1-20 Introduction

Paths

During the CTC API installation, the file CTCVARS.BAT is copied to your PC.
This file contains the following paths:

drive:\directory\LIB
drive:\directory\INCLUDE

where drive:\directory is the drive and directory used for the CTC API
installation. By default, this is C:\PROGRAM FILES\DIALOGIC\CTC API.

These paths define the location of the CTC API library and definitions files.

1.13 Changes to CTC for Version 3.0

Table 1-5 provides a summary of new features and routines provided with this

version of CTC.

Table 1-5 Summary of Changes to CTC for V3.0

This version of CTC adds
support for...

Change to CTC API...

For more information, refer
to...

Private data for:
e CSTA Phase I switches
« Ericsson® MD110 (BC9)

e Siemens®
Hicom® 300E V3

New elements for the following
routines: ctcCstaEscape,
ctcCstaGetPrivateData,
ctcCstaGetPrivateEventData,
ctcCstaGetPrivateRouteData,
ctcCstaSetPrivateData.

Also:

= ctcAssociateData is
supported for the Ericsson
MD110.

= Application data can be
passed with the
ctcDeflectCall and
ctcConsultationCall routines
for the Hicom 300E V3.

The following:

< For information about
API extensions,
Section 1.1.3 and the
description of ctcAssign
in Chapter 2.

= For details of CSTA
routines, Appendix B.

= For details of the
ctcAssociateData,
ctcDeflectCall, and
ctcConsultationCall
routines, Chapter 2 and
Appendix B.

Additional routine available
for Lucent DEFINITY G3
switches.

The APlextensions field of the
ctcAssignData structure
supports an additional value,
ctcK_ASAI. New routine
available: ctcAsaiGetAcdStatus.

The following:

< For information about
API extensions,
Section 1.1.3 and the
description of ctcAssign
in Chapter 2.

e For details of the
ctcAsaiGetAcdStatus
routine, Appendix C.

Introduction 1-21

Table 1-5 Summary of Changes to CTC for V3.0 (Continued)

This version of CTC adds
support for...

Change to CTC API...

For more information, refer
to...

Additional processing option
for predictive calls available
for Lucent DEFINITY G3
switches.

Additional value
(ctcK_AllocAMDAdmin)
supported for the

ctcMakePredictiveCall allocation

The description of
ctcMakePredictiveCall in
Chapter 2 and Lucent
DEFINITY G3 support for

argument. the allocation argument in
Appendix C.
Improved link failure None. The following:

detection, particularly for
TCP/IP connections.

The CTC server can
periodically poll the link to
the switch, checking whether
it is still enabled. If the
switch does not acknowledge
two consecutive poll requests
from the CTC server, the
CTC server assumes that the
link has failed and restarts
it.

= For details of how the
CTC server reports link
problems to the CTC
API, see Section 1.6.1.

« For details of how to use
the Configuration
Program to enable link
state checking, see the
CT-Connect Installation
and Administration
Guide for your CTC
server platform.

1.14 Compatibility With Previous Versions of CTC

If you are upgrading from CTC Version 2.0, note the following:

e CTC clients running Version 2.0 or 3.0 of the CTC API are compatible with a
CTC server running Version V3.0 of the CTC Server software.

= You can continue to use CTC Version 2.0 applications on a client system
running CTC API Version V3.0 software.

These temporary measures enable your CTC network and CTC applications to
be upgraded progressively. For more information about installing the software,
refer to the CT-Connect Installation and Administration Guide for your CTC

server platform.

Note that:

= When you use ctcAssign, the APlversion value ctcK_CurrentVersion is the

equivalent of ctcK_CTCV30 for this version of CTC. Programs compiled with
either of these values will automatically access the new interface to modified
CTC API functions. For more information about ctcAssign, refer to Chapter 2.

1-22 Introduction

= The default calling convention for CTC V2.0 and V3.0 applications on
Windows™ 95 and Windows NT™ is stdcall. For CTC API V1.1/1.11, the
default convention was cdecl. If you recompile CTC V1.1/V1.11 applications
on CTC clients running CTC API V3.0, you will need to modify your build
procedure. Refer to Section 1.12.9 for details.

Introduction 1-23

1-24 Introduction

2

CTC Routine Specifications

This chapter gives detailed descriptions of CTC routines, in alphabetical order.

The descriptions indicate how to invoke telephony functions through CTC, but
do not describe how the functions work on specific switches. Refer to the
documentation supplied with your switch for details of how they work on that
particular switch. For example, PBX documentation should indicate the
maximum number of parties allowed on a conference call.

Because of the differences between protocols and switches, there may be
differences in the routines and features made available over the CTC link.
Appendix A tells you which CTC routines and features are common to all CTC
protocol/switch links. The appendixes that follow tell you which routines and
features are specific to the individual links supported by this release of CTC.

CTC Routine Specifications 2-1

ctcAddMonitor

ctcAddMonitor
Adds a Device to a Monitor Channel

Format in C
unsigned int ctcAddMonitor (ctcChanld monitorChannel,
ctcAssignData *assignData)
Description

2-2

The ctcAddMonitor routine associates a device with a monitor channel and sets
monitoring on for that device so that event information is returned on the
monitor channel. A monitor channel is a single logical channel you use for
monitoring multiple devices, such as, telephones and route points.

Only monitoring is supported on a monitor channel. If you want to use CTC
routines to perform telephony functions for a device, you must use ctcAssign to
assign a channel to the device.

Monitoring on a Monitor Channel
To set up a monitor channel, you use the following routines:

1. ctcAssign to create a monitor channel
2. ctcAddMonitor for each device you want to monitor on the monitor channel
3. ctcGetEvent to return information on the monitor channel

To identify which monitor channel is used to return information about a device,
you specify the channel identifier with the monitorChannel argument. To
identify the device, you specify its DN. Event information for the device is then
returned on the monitor channel.

Monitoring Another Monitor Channel

To monitor another monitor channel, use the ctcGetChannellnformation to
obtain a device number for the monitor channel (returned in the setDN field of
the ctcChanData structure) and specify this as the deviceDN with the
assignData argument.

Note that:

= You can only use one level of nested monitoring for monitor channels. This
means that you cannot monitor a monitor channel if that channel is already
monitoring another monitor channel.

< A monitor channel cannot monitor itself.

CTC Routine Specifications

ctcAddMonitor

Removing Monitoring for a Device

To stop monitoring a device on the monitor channel, you use ctcRemoveMonitor.
For more information, see the description of the ctcRemoveMonitor routine.
Restriction

This routine is not supported on CTC clients running Windows 3.1/3.11. CTC
applications running on Windows 3.1/3.11 cannot assign to monitor channels.

Arguments
monitorChannel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the monitor channel.

You use this argument to identify the monitor channel that will be used for
monitoring the device.

The ctcChanld datatype is defined in a CTC definitions file (see Section 1.5).

assignData
type: ctcAssignData
access: read only

mechanism: by reference

This argument contains the address of a fixed-format structure, for which you
allocate memory of type ctcAssignData. The structure is defined ina CTC
definitions file (see Section 1.5) and is formatted as follows:

ctcAssignData {

unsi gned short devi ceType;
unsi gned char APl ver si on;
unsi gned char APl ext ensi ons;
ctcDeviceString devi ceDN;

s
The following information is required in the ctcAssignData fields:

« deviceType

This 16-bit field identifies the type of device you are assigning to the monitor
channel. You can use the monitor channel to monitor the following:

— Telephony devices, such as, telephones, multiline sets, groups (queues), or
Voice Response Units (VRUS)

CTC Routine Specifications 2-3

ctcAddMonitor

— Route points (logical devices used for call routing)
— Monitor channels

Specify one of the following values in the deviceType field:

Value Description

ctcK_Dn Specifies that a telephony device will be monitored
ctcK_RoutePoint Specifies that a route point will be monitored
ctcK_MonitorChannel Specifies that a monitor channel will be monitored

For details of support for additional deviceType values, refer to the
switch-specific appendixes.

e APIlversion

This 8-bit field identifies the version of CTC API used. This ensures
compatibility with previous and new versions of the CTC software when you
compile your application. Specify one of the following values:

Value Description

ctcK_CTCV20 Specify this value if you have written a CTC application for use
only with version 2.0 of the CTC API software.

ctcK_CTCV30 Specify this value if you are writing a CTC application for use only
with Version 3.0 of the CTC API software.

ctcK_CurrentVersion Specify this value and your application will be compatible with the
current version of the CTC API installed on your CTC client
system. When you upgrade to a future version of the CTC API,
your application will automatically gain access to any new events
provided as part of that CTC API.

Dialogic recommends you use ctcK_Current\ersion to ensure future
compatibility.

If an application passes the value ctcK_CTCV11 or null data in the
APlversion field, it will not work with a CTC V3.0 server. CTC returns the
condition value ctcUnsupAPIlversion (1037).

2-4 CTC Routine Specifications

APlextensions

ctcAddMonitor

Use this 8-bit field to indicate whether your application is portable and can
be used with CTC links to various switches, or a switch-specific application
that makes use of CTC API extensions. CTC API extensions are additional,
switch-specific functions (for example, ctcMIpPlayMessage for Nortel
Meridian switches). Specify one of the following values:

Value

Description

ctcK_None

ctcK_CstaPrivate

ctcK_ASAI

ctcK_MeridianLink

This indicates that your application is portable for links to different
CTC-supported switches, and will not support switch-specific
extensions to the CTC API.

This indicates that your application will use both standard CTC
functions and additional CTC functions that are only available for
CSTA switches. These functions are described in Appendix B.

This indicates that your application will use both standard CTC
functions and CTC functions that are specific to Lucent DEFINITY
switches. For more information about these switch-specific functions,
see Appendix C.

This indicates that your application will use both standard CTC
functions and CTC functions that are specific to Nortel Meridian
switches. For more information about these switch-specific functions,
see Appendix D.

deviceDN

This 24 byte field identifies the device to be monitored on the monitor

channel:

— For a telephony device or route point, use this field to specify its directory
number (telephone number). This is an ASCII string that can contain any
combination of numbers 0 through 9 and the characters * and #.

— For a monitor channel, specify the device number returned in the setDN
field of the ctcChanData structure. This is returned when you call
ctcGetChannellnformation for the monitor channel. See the description of
ctcGetChannellnformation for more information.

Note that you must specify the device number exactly as it is returned in
the setDN field, using the same case for letters. The device number is an
ASCII string that can contain any combination of numbers 0 through 9,
uppercase letters A through F, and the characters * and #.

The maximum length for deviceDN is specified by the literal ctcMaxDnLen in
a CTC definitions file (see Section 1.5). Note that this maximum length
includes the null termination character (NUL).

CTC Routine Specifications 2-5

ctcAnswerCall

ctcAnswercCall
Answer a Call

Format in C
unsigned int ctcAnswerCall (ctcChanlid channel,
unsigned int callRefld)
Description

Use the ctcAnswerCall routine whenever CTC notifies you there is an incoming
call to the assigned device and the user wishes to answer the call.

This routine is useful for hands-free operation on a feature phone because the
user can answer the telephone without lifting the handset. However, it cannot be
used with standard telephones.

CTC notifies you of an incoming call only if both of the following conditions
apply:
1. You have set monitoring on, using ctcSetMonitor.

2. You are using the ctcGetEvent or ctcWinGetEvent routine, which indicates a
change in state to receive (ringing).

The call reference identifier for the incoming call is returned by ctcGetEvent or
ctcWinGetEvent.

Arguments
channel
type: ctcChanld
access: read only

2-6

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

The ctcChanld datatype is defined in a CTC definitions file (see Section 1.5).

CTC Routine Specifications

ctcAnswercCall

callRefld
type: integer (unsigned)
access: read only

mechanism: by value

This 32-bit integer contains the call reference identifier for the incoming call.
Specify the call reference identifier returned by ctcGetEvent or ctcWinGetEvent
for the incoming call.

CTC Routine Specifications 2-7

ctcAssign

ctcAssign

Assign a Channel

Format in C

unsigned int ctcAssign (ctcChanld *channel,

ctcAssignData *assignData,
ctcNameString serverName,
ctcLogldString logicalldentifier,
ctcNetString networkType)

Description

2-8

Before a device (for example, a telephone) can be linked to a CTC network, the
device and the communications channel must be uniquely identified to CTC by
your application.

The ctcAssign routine assigns a logical communications channel between the
application, the CTC server system, and the specified telephone device, and then
returns an identifier (ID) for that channel.

When to Use ctcAssign

You must use the ctcAssign routine before any of the other CTC routines so that
you know the channel ID associated with a device. All subsequent CTC routines
that you invoke for the device require you to specify that channel ID.

If you use another CTC routine before ctcAssign, an error message is returned.
For example, on Windows NT, a system error 6 (ERROR_INVALID_HANDLE)
or the CTC condition value ctcRpcConnecFail.

You need assign a channel only once for each user session; that is, you do not
have to assign and deassign the channel for each telephone call a user makes
from a particular phone.

Monitor Channels

If you need to monitor a number of devices, you can use ctcAssign to create a
single monitor channel that receives events for all the devices. For example,
your application can create one channel to receive event information for all
devices in an office building or for a particular group.

To set up a monitor channel, you use the following sequence of routines:
1. ctcAssign to assign a monitor channel

2. ctcAddMonitor for each device you want to monitor on the monitor channel

CTC Routine Specifications

ctcAssign

3. ctcGetEvent to return information for all devices associated with the monitor
channel

Note that you do not need to use ctcSetMonitor in this sequence; when you use
ctcAddMonitor, monitoring is automatically enabled for the device.

Routines Supported for Monitor Channels

The following subset of CTC routines are supported for channels assigned to
monitor channels:

ctcAddMonitor

ctcAssign

ctcDeassign

ctcErrMsg
ctcGetChannellnformation
ctcGetEvent
ctcRemoveMonitor

Restriction: Monitor Channels and Windows 3.1/3.11

Monitor channels are not supported on CTC clients running Windows 3.1/3.11. If
you try to assign to a monitor channel from Windows 3.1/3.11, CTC returns an
error message, for example, ctclnvDN.

Arguments
channel
type: ctcChanld
access: write only

mechanism: by reference

The channel argument is a pointer to datatype ctcChanld which receives the
identifier for the channel. The ctcChanld datatype is defined ina CTC
definitions file (see Section 1.5).

The channel ID is the value used by the other CTC routines to identify the
device or monitor channel used.

For an example of the ctcChanld argument and how to use ctcAssign, refer to
the example file CTC_EXP.C installed on your CTC client (not available on
Windows 3.1/3.11 clients). For location details, refer to the CT-Connect
Installation and Administration Guide for your CTC server platform.

CTC Routine Specifications 2-9

ctcAssign

assignData
type: ctcAssignData
access: read only

mechanism: by reference

This argument contains the address of a fixed-format structure, for which you
allocate memory of type ctcAssignData. The structure is defined ina CTC
definitions file (see Section 1.5) and is formatted as follows:

ctcAssignData {

unsi gned short devi ceType;
unsi gned char APl ver si on;
unsi gned char APl ext ensi ons;
ctcDevi ceString devi ceDN;

s
The following information is required in the ctcAssignData fields:
« deviceType

This 16-bit field identifies the type of device to which you are assigning. You
can assign a channel to the following:

— A telephony device. For example, a telephone, multiline set, group
(queue), ACD agent, or Voice Response Unit (VRU).

— A route point. A route point is a logical device used for call routing. It has
a dialable number but there is no real, physical device.

When a call reaches the route point, the switch passes a request for the
call's destination to your application. Your application can use the
ctcGetRouteQuery and ctcRespondToRouteQuery routines to obtain
information about the call and reroute it to another destination.

— A monitor channel. This is a single channel you use to monitor multiple
telephony devices, route points, and other monitor channels.

Monitor channels are not supported on CTC clients running
Windows 3.1/3.11.

Additional device types may be supported by your switch. For details, refer to
the switch-specific appendixes.

To assign to a telephony device, route point, or monitor channel, specify one of

2-10 CTC Routine Specifications

ctcAssign

the following values in the deviceType field:

Specify this value... To assign to...
ctcK_Dn A telephony device
ctcK_RoutePoint A route point
ctcK_MonitorChannel A monitor channel

APlversion

This 8-bit field identifies the version of CTC API used. This ensures
compatibility with previous and new versions of the CTC software when you
compile your application. Specify one of the following values:

Value Description

ctcK_CTCV20 Specify this value if you have written a CTC application for use
only with Version 2.0 of the CTC API software.

ctcK_CTCV30 Specify this value if you are writing a CTC application for use only
with Version 3.0 of the CTC API software.

ctcK_CurrentVersion Specify this value and your application will be compatible with the
current version of the CTC API installed on your CTC client
system. When you upgrade to a future version of the CTC API,
your application will automatically gain access to any new events
provided as part of that CTC API.

Dialogic recommends you use ctcK_Current\ersion to ensure future
compatibility.

If an application passes the value ctcK_CTCV11 or null data in the
APlversion field, it will not work with a CTC V3.0 server. CTC returns the
condition value ctcUnsupAPIlversion (1037).

CTC Routine Specifications 2-11

ctcAssign

< APlextensions

Use this 8-bit field to indicate whether your application is portable and can
be used with CTC links to various switches, or a switch-specific application
that makes use of CTC API extensions. CTC API extensions are additional,
switch-specific functions (for example, ctcMIpPlayMessage for Nortel
Meridian switches). Specify one of the following values:

Value Description

ctcK_None This indicates that your application is portable for links to different
CTC-supported switches, and will not support switch-specific
extensions to the CTC API.

ctcK_CstaPrivate This indicates that your application will use both standard CTC
functions and additional CTC functions that are only available for
CSTA switches. These functions are described in Appendix B.

ctcK_ASAI This indicates that your application will use both standard CTC
functions and CTC functions that are specific to Lucent DEFINITY
switches. For more information about these switch-specific functions,
see Appendix C.

ctcK_MeridianLink This indicates that your application will use both standard CTC
functions and CTC functions that are specific to Nortel Meridian
switches. For more information about these switch-specific functions,
see Appendix D.

e deviceDN

If you are assigning a channel to a telephony device or route point, use this
field to specify its directory number (telephone number). This is an ASCII
string that can contain any combination of numbers 0 through 9 and the
characters * and #. The maximum length for deviceDN is specified by the
literal ctcMaxDnLen in a CTC definitions file (see Section 1.5). Note that this
maximum length includes the null termination character (NUL).

If you are assigning to a monitor channel, specify a zero-length character
string.

2-12 CTC Routine Specifications

ctcAssign

serverName
type: ctcNameString
access: read only

mechanism: by reference

This argument is the address of a character string that contains the network
name or address for the CTC server.

The maximum length for serverName is specified by the literal
ctcNodeNameLen in a CTC definitions file (see Section 1.5). Note that this
maximum length includes the null termination character (NUL).

Note that if you specify an invalid network name or address on Windows 95 or
Windows NT, system error 1722 (RPC error rpc_s_server_unavailable) is
reported. If you use ctcErrMsg to map this error, it returns ctcServerUnknown.

logicalldentifier

type: ctcLogldString
access: read only
mechanism: by reference

This argument is the address of a character string that contains an identifier for
the link. The identifier is assigned to the link at the CTC server and is defined
either during the installation of the server software, or after the installation
with the CTC Control Program (see the CT-Connect Installation and
Administration Guide for your CTC server platform).

The maximum length for logicalldentifier is specified by the literal ctcLogldLen
in the CTC definitions file. Note that this maximum length includes the null
termination character (NUL).

CTC Routine Specifications 2-13

ctcAssign

networkType
type: ctcNetString
access: read only

mechanism: by reference

This argument is the address of a character string value that identifies the
network protocol used between the CTC client and the CTC server.

The network protocol that you specify must be supported by the CTC server,
CTC client, and RPC. On Windows 3.1/3.11 clients, only TCP/IP is supported.
For other CTC client systems, check with the system manager of your CTC
network for details.

Specify one of the values in the following table:

Network Protocol Value
NetBIOS™ over NetBEUI ncacn_nb_nb
TCP/IP ncacn_ip_tcp
DECnet™ ncacn_dnet_nsp
NetBIOS over TCP/IP ncacn_nb_tcp
Named pipes ncacn_np
Novell® SPX ncacn_spx

The maximum length for networkType is specified by the literal ctcNetLen in
the CTC definitions file. Note that this maximum length includes the null
termination character (NUL).

2-14 CTC Routine Specifications

ctcAssociateData

ctcAssociateData
Send Call Data to the Switch

Format in C
unsigned int ctcAssociateData (ctcChanld channel,
unsigned int callRefld,
ctcApplString applicationData)
Description

The ctcAssociateData routine enables you to associate data with a call and pass
it to the switch. For example, you can use this routine to associate customer
reference information or account details with a call.

The data is stored by the switch and reported on subsequent events until the call
is terminated.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

callRefld
type: integer (unsigned)
access: read only

mechanism: by value

This argument is a 32-bit integer that contains the call reference identifier. This
identifier is returned by the ctcGetEvent or ctcWinGetEvent routines, and
routines such as ctcMakeCall.

applicationData

type: ctcApplString
access: read only
mechanism: by value

This argument is the address of a character string that contains the data to be
associated with the call.

CTC Routine Specifications 2-15

ctcAssociateData

The maximum length for applicationData is specified by the literal
ctcAppDatalen in a CTC definitions file (see Section 1.5). Note that this
maximum length includes the null termination character (NUL).

2-16 CTC Routine Specifications

ctcCancelCall

ctcCancelCall
Cancel a Consultation Call

Format in C
unsigned int ctcCancelCall (ctcChanld channel,
unsigned int callRefld)
Description

If you make a consultation call, placing the original call on hold, you can cancel
or hang up the consultation call with ctcCancelCall. This routine disconnects the
consultation call (returning the assigned device to the initiate state), at which
point you can either use ctcConsultationCall to make another call or
ctcRetrieveHeld to return to the first call. Always use this routine to cancel or
hang up a consultation call rather than ctcHangupCall because, on some
switches, ctcHangupCall transfers the original call.

You can also use ctcReconnectHeld to cancel a consultation call and return to the
first call. ctcReconnectHeld has the same effect as using both ctcCancelCall and
ctcRetrieveHeld.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

callRefld
type: integer (unsigned)
access: read only

mechanism: by value

This 32-bit integer contains the call reference identifier for the consultation call
to be cancelled. Specify the call reference identifier returned by ctcGetEvent or
ctcWinGetEvent for the consultation call or other routines such as
ctcConsultationCall.

CTC Routine Specifications 2-17

ctcConferencelJoin

ctcConferencedoin
Merge Calls into a Conference

Format in C
unsigned int ctcConferenceJoin (ctcChanld channel,
unsigned int heldCallRefld,
unsigned int activeCallRefld,
unsigned int *newCallRefld)
Description

The ctcConferenceJoin routine merges two or more calls into a single conference
call.

For example, for A to include B and C in a conference call, A has to:
1. Call B, using ctcMakeCall. B answers the call.

2. Call C, using ctcConsultationCall, which automatically puts the call to B on
hold.

3. Invoke ctcConferenceJoin when connected and talking to C. A, B, and C are
then in a conference call.

To include other parties in the conference, A simply repeats the sequence of
ctcConsultationCall and ctcConferenceJoin for each additional party.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

heldCallRefld
type: integer (unsigned)
access: read only

mechanism: by value

This 32-bit integer contains the call reference identifier for the held call to be
included in the conference. Specify the call reference identifier returned by
ctcGetEvent or ctcWinGetEvent for the held call.

2-18 CTC Routine Specifications

ctcConferencelJoin

activeCallRefld

type: integer (unsigned)
access: read only
mechanism: by value

This 32-bit integer contains the call reference identifier for the active call to be
included in the conference.

The call reference identifier for the active call is returned by ctcGetEvent or
ctcWinGetEvent.

newCallRefld

type: integer (unsigned)

access: write only

mechanism: by reference

This argument is the address of a 32-bit integer into which is written a call
reference identifier for the new conference call.

CTC Routine Specifications 2-19

ctcConsultationCall

ctcConsultationCall
Make a Consultation Call

Format in C
unsigned int ctcConsultationCall (ctcChanld channel,

ctcDeviceString calledNumber,
unsigned int consultType,
unsigned int callRefld,
ctcApplString applicationData,
unsigned int *newCallRefld)

Description

The ctcConsultationCall routine makes a call to a third party when there is a
current call on the assigned device. You can then use one of the following
routines:

= ctcTransferCall to transfer the call and disconnect the assigned device

= ctcConferenceJoin to join the original call and the call to the third party into
a conference call

When you initiate a call transfer or conference call, always use
ctcConsultationCall. This routine makes the telephone call and allows the
switch to allocate any required resources.

Making a Conference Call

For a conference call, you use ctcConsultationCall only for the second call, or
subsequent calls; you make the initial call using ctcMakeCall.

For example, for A to include B and C in a conference call:
1. Acalls B, using ctcMakeCall.

2. Acalls C, using ctcConsultationCall, which automatically puts the call to B
on consultation hold.

3. Ainvokes ctcConferenceJoin when connected and talking to C. A, B, and C
are then in a conference call.

To include other parties in the conference, A repeats the sequence of
ctcConsultationCall and ctcConferenceJoin for each additional party.

2-20 CTC Routine Specifications

ctcConsultationCall

Transferring a Call
To transfer a call, use ctcConsultationCall followed by ctcTransferCall.

For example, for A to transfer to C an incoming call from B (where A's current
call is the call from B):

1. Bcalls A, using ctcMakeCall, and A answers.

2. Acalls C, using ctcConsultationCall, which automatically puts the call from
B on hold.

3. Ainvokes ctcTransferCall when connected to C. B and C are now connected,
and A is automatically disconnected.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

calledNumber

type: ctcDeviceString
access: read only
mechanism: by value

This character string contains the number of the device you have called. The
ASCII string can contain any combination of numbers 0 through 9 and the
characters * and #.

The maximum length for calledNumber is specified by the literal ctctMaxDnLen
in the CTC definitions file. Note that this maximum length includes the null
termination character (NUL).

consultType

type: integer (unsigned)
access: read only
mechanism: by value

This argument specifies the type of consultation call made to the third party. It
contains one of the values in Table 2—1.

CTC Routine Specifications 2-21

ctcConsultationCall

Table 2-1 Consult Type Values for ctcConsultationCall

Value Description

ctcK_ConsultGeneric The call is initiating either a call transfer or a conference
call.

ctcK_ConsultTransfer The call is initiating a call transfer.

ctcK_ConsultConference The call is initiating a conference call.

The value that you specify depends on the switch you are using. For most

switches, you can use ctcK_ConsultGeneric. However, some switches require you
to specify whether the call is initiating a transfer or a conference call. If a switch
does not accept ctcK_ConsultGeneric, it is noted in the switch-specific appendix.

callRefld
type: integer (unsigned)
access: read only

mechanism: by value

This 32-bit integer contains the call reference identifier for the current active
call. Specify the call reference identifier for the active call as returned by
ctcGetEvent, ctcWinGetEvent, or other associated routine such as, ctctMakeCall.

applicationData

type: ctcApplString
access: read only
mechanism: by value

This argument is the address of a NUL-terminated character string that you
want to associate with a call. For example, customer reference information or
account data.

If the consultation call is successful, the data is stored by the switch and
reported on subsequent events until the call is terminated.

If you do not want to associate data with the call, pass a zero-length string.

2-22 CTC Routine Specifications

ctcConsultationCall

newCallRefld

type: integer (unsigned)
access: write only
mechanism: by reference

This argument is the address of a 32-bit integer that receives the call reference
identifier for the new call.

Note that some switches may not supply a call reference identifier with this
argument. Refer to the switch-specific appendixes for details.

CTC Routine Specifications 2-23

ctcDeassign

ctcDeassign
Deassign a Channel

Formatin C

unsigned int ctcDeassign (ctcChanld channel)

Description

The ctcDeassign routine deassigns the channel from the device and frees all
resources associated with it, both locally and on the CTC server.

Use this routine at the end of a user session; that is, when the user has finished
using a CTC application and the application no longer needs to make use of the
device to which the channel was assigned. Monitoring and routing are switched
off before ctcDeassign completes. If you call ctcDeassign and there are
outstanding monitoring or routing requests, a condition value is returned:

e For ctcGetEvent or ctcWinGetEvent, the ctcMonitorOff condition value is
returned.

= For ctcGetRouteQuery or ctcWinGetRouteQuery, the ctcRoutingOff condition
value is returned.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

2-24 CTC Routine Specifications

ctcDeflectCall

ctcDeflectCall
Deflect a Ringing Call to Another Extension

Format in C
unsigned int ctcDeflectCall (ctcChanld channel,
unsigned int callRefld,
ctcDeviceString destinationDn,
ctcApplString applicationData)
Description

The ctcDeflectCall routine allows you to deflect a call ringing on the assigned
device to another extension.

You use the destinationDn argument to specify the dialable number of the
extension to which you want the call deflected. If the switch administrator has
defined a default extension to which calls are deflected, the routine does not
require the destinationDn argument.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

callRefld
type: integer (unsigned)
access: read only

mechanism: by value

This argument is a 32-bit integer that contains the call reference identifier for
the ringing call. The call reference identifier for the ringing call is returned by
ctcGetEvent or ctcWinGetEvent.

CTC Routine Specifications 2-25

ctcDeflectCall

destinationDn

type: ctcDeviceString
access: read only
mechanism: by value

This character string contains the number of the destination device. The ASCII
string can contain any combination of numbers 0 through 9 and the characters *
and #.

The maximum length for destinationDn is specified by the literal ctcMaxDnLen
in the CTC definitions file. Note that this maximum length includes the null
termination character (NUL).

applicationData

type: ctcApplString
access: read only
mechanism: by value

You use this argument to associate data, for example, customer reference
information or account details, with the call. The argument is the address of a
NUL-terminated character string.

If the call is successful, the data is stored by the switch and reported on
subsequent events until the call is terminated.

If you do not want to associate data with the call, pass a zero-length string.

2-26 CTC Routine Specifications

ctcErrMsg

ctcErrMsg
Get the Defined Name for a Condition Value

Formatin C

char *ctcErrMsg (unsigned int errorCode)

Description

The ctcErrMsg routine returns the address of a character string that contains
the defined name associated with a condition value.

The defined name can provide you with more information by indicating the
nature of the condition. For example, ctcMonitorOff indicates that monitoring is
set off for a channel. You can also use the name to refer to Chapter 3 which
describes CTC conditions.

Each condition value is associated with a name in the language-specific error
definitions file (for example, CTC_ERR.H). When you use ctcErrMsg, CTC
returns the address of a null-terminated character string that contains the
defined name for a condition value.

For example, if you specify the value 1014 with the errorCode argument, CTC
returns the address of a null-terminated character string that contains the name
ctclnvLogld. You can then refer to Chapter 3 for a description of ctcinvLogld.

Arguments
errorCode
type: integer (unsigned)
access: read only

mechanism: by value

This 32-bit integer contains the condition value returned by a CTC routine. CTC
returns the address of a null-terminated character string that contains the name
associated with this condition value.

If the routine cannot map a name to the condition value, it returns the address
of a character string containing the decimal value of the input.

If you specify a condition value for an RPC error, the character string contains
both:

e The name CTC associates with the condition

e The name RPC associates with the condition

CTC Routine Specifications 2-27

ctcErrMsg

For example, ctcErrMsg can return the address of the character string
ctcRpcConnecFail/rpc_s_ss_in_null_context. In this example, ctcRpcConnecFail
is the CTC-defined name and rpc_s_ss_in_null_context is the RPC name
associated with the condition.

2-28 CTC Routine Specifications

ctcGetAgentStatus

ctcGetAgentStatus
Get Agent Status Information
Format in C
unsigned int ctcGetAgentStatus (ctcChanld channel,
unsigned int *agentMode,
ctcDeviceString agentData)
Description

The ctcGetAgentStatus routine returns information about the operating mode
for an ACD agent.

The operating mode is set either manually or with the ctcSetAgentStatus
routine.

Using this routine, you can find out if the Agent is:
= Logged into a queue

= Ready to take calls

= Busy

= Completing details after a call

= Doing other work

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

agentMode
type: integer (unsigned)
access: write only

mechanism: by reference

This argument is the address of a 32-bit integer into which CTC writes one of
the agent mode values shown in Table 2-2.

CTC Routine Specifications 2-29

ctcGetAgentStatus

Table 2-2 Agent Mode Values for ctcGetAgentStatus

Value Description

ctcK_AgentReady The agent is ready to receive calls
ctcK_AgentNotReady The agent is not ready to receive calls
ctcK_AgentOtherWork The agent cannot take calls because of other work

ctcK_AgentAfterCallWork The agent is completing details of a call

ctcK_AgentLogout The agent is logged out
agentData

type: ctcDeviceString

access: write only

mechanism: by reference

This argument receives optional data (such as a password). You must supply
enough memory for CTC to return this data. The maximum length for
agentData is specified by the literal ctcMaxDnLen in a CTC definitions file (see
Section 1.5). Note that this maximum length includes the null termination
character (NUL).

2-30 CTC Routine Specifications

ctcGetCallForward

ctcGetCallForward
Get Information About Call Forward

Format in C
unsigned int ctcGetCallForward (ctcChanld channel,
unsigned int *forwardMode,
ctcDeviceString forwardDN)
Description

This routine returns information about the current call forward setting for
incoming calls on the assigned device. The call forward mode is set either
manually or with the ctcSetCallForward routine.

ctcGetCallForward shows whether the following calls to the assigned device are
redirected:

= External calls only
= Internal calls only
* Allcalls
= Nocalls

This routine also shows whether incoming calls are forwarded if the assigned
device is busy or if the call is not answered after a period of time (as determined

by the switch).
Arguments

channel

type: ctcChanld

access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

CTC Routine Specifications 2-31

ctcGetCallForward

forwardMode
type: integer (unsigned)
access: write only

mechanism: by reference

This argument is a 32-bit integer into which CTC writes one of the values shown
in Table 2-3.

Table 2-3 ctcGetCallForward Modes Returned

Value Calls Forwarded

ctcK_CfAll All calls

ctcK_CfExtBusy External calls when the assigned device is busy

ctcK_CfExtNoAnswer External calls when there is no answer from the
assigned device

ctcK_CfIntBusy Internal calls when the assigned device is busy

ctcK_CfIntNoAnswer Internal calls when there is no answer

ctcK_CfNoAnswerBusy All calls if there is no answer or the assigned device is
busy

forwardDN

type: ctcDeviceString

access: write only

mechanism: by reference

This argument is the address of a character string used by CTC to return the
number of the destination device. If call forwarding is not set, CTC returns a
zero-length character string.

The maximum length for forwardDN is specified by the literal ctcMaxDnLen in
the CTC definitions file. Note that this maximum length includes the null
termination character (NUL).

2-32 CTC Routine Specifications

ctcGetChannellnformation

ctcGetChannellnformation
Get Information About a Channel

Format in C
unsigned int ctcGetChannellnformation (ctcChanld channel,
ctcChanData *channelData)
Description

The ctcGetChannellnformation routine returns information about the
communications channel and the device to which the channel is assigned. The
routine can provide the following information:

= The line type (telephone, data set, trunk, group, Voice Response Unit (VRU),
route point, or monitor channel)

= The prime number of the device (the extension number or trunk number for
the device, or the prime number on a multiline set)

= The device type (if not ACD), for example, 500, 2500, or a feature phone
e The CTC procedures supported

< The DN for the device, for example, its telephone number or extension
number

You need to use ctcGetChannellnformation only once, each time you assign a
channel to a device; it provides static information on the nature of the device and
the channel that is assigned to that device.

Monitor Channels

For monitor channels, ctcGetChannellnformation returns the following
information only:

e The CTC procedures supported
= A device number for the monitor channel

Use the device number (returned in the setDN field of the ctcChanData
structure) with ctcAddMonitor to set up monitoring a monitor channel. For more
information, see the description of ctcAddMonitor.

Note that you must specify the device number exactly as it is provided using the
same combination of numbers and uppercase letters. For example, 1IE4DCO.

CTC Routine Specifications 2-33

ctcGetChannelinformation

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

channelData

type: ctcChanData
access: write only
mechanism: by reference

This argument contains the address of a fixed-format structure, for which you
allocate memory of type ctcChanData. The structure is defined ina CTC
definitions file (see Section 1.5) and is formatted as follows:

ctcChanDat a {

unsi gned i nt i neType;

unsi gned i nt prime;

unsi gned i nt set Type;

unsi gned i nt pr ocedur eSupport;

unsi gned i nt attri but eSupport;
ctcDeviceString set DN;

unsi gned i nt swi t chSpeci fi cSupport ;

s
The following information is returned in the ctcChanData fields:
- lineType

This 32-bit integer contains a value that identifies the type of line. The
following table shows the values that can be returned:

Value Description

ctcK_LineACD The channel is assigned to a group on the switch
ctcK_LineDataSet The channel is assigned to a data set
ctcK_LineMonitorChannel The channel is assigned to a monitor channel
ctcK_LineRoutePoint The channel is assigned to a route point on the switch
ctcK_LineTrunk The channel is assigned to a trunk line on the switch
ctcK_LineVoiceSet The channel is assigned to a telephone

2-34 CTC Routine Specifications

ctcGetChannellnformation

prime

This 32-bit integer contains a value that defines whether the line is a
primary line (1) or not (0). The primary line is a line selected by the user to
which a device is automatically connected when it goes off-hook (that is, when
it enters the initiate state).

setType

This 32-bit integer contains a value that identifies the type of telephone set
associated with the assigned channel. For details of the values returned in
this field, refer to the switch-specific appendixes.

procedureSupport

This 32-bit integer identifies the procedure routines supported by the switch
for the assigned device. The following values can be returned in this field:

ctcM_AddMonitor
ctcM_AnswerCall
ctcM_Assign
ctcM_AssociateData
ctcM_CancelCall
ctcM_ConferenceJoin
ctcM_ConsultationCall
ctcM_Deassign
ctcM_DeflectCall
ctcM_GetChannellnformation
ctcM_GetEvent
ctcM_GetRouteQuery
ctcM_HangupCall
ctcM_HoldcCall
ctcM_MakecCall
ctcM_MakePredictiveCall
ctcM_PickupCall
ctcM_ReconnectHeld
ctcM_RemoveMonitor
ctcM_RespondTolnactive
ctcM_RespondToRouteQuery
ctcM_RetrieveHeld
ctcM_SendDTMF
ctcM_SingleStepTransfer
ctcM_Snapshot
ctcM_SwapWithHeld
ctcM_TransferCall

CTC Routine Specifications 2-35

ctcGetChannelinformation

Note that:

If ctcM_GetEvent is returned, the switch supports ctcGetEvent and

ctcWinGetEvent.

If ctcM_GetRouteQuery is returned, the switch supports
ctcGetRouteQuery and ctcWinGetRouteQuery.

— A function-supported mask is not returned for ctcErrMsg. This routine is

supported for all channels.

attributeSupport

This 32-bit integer identifies the attribute routines supported by the switch
for the assigned device. Attribute routines are routines that set operating
modes for the assigned device.

The following values can be returned:

ctcM_GetAgentStatus
ctcM_GetCallForward
ctcM_GetDoNotDisturb
ctcM_GetMessageWaiting
ctcM_GetMonitor
ctcM_SetAgentStatus
ctcM_SetCallForward
ctcM_SetDoNotDisturb
ctcM_SetMessageWaiting
ctcM_SetMonitor

setDN

This field contains one of the following:

If the channel is assigned to a telephony device or route point, the number
associated with the device or route point, for example, its telephone
number or extension number.

If the channel is assigned to a monitor channel, a device number
generated by CTC. You use this device number with the ctcAddMonitor
command to set up a monitor channel that monitors this monitor channel.

The maximum length for setDN is specified by the literal ctcMaxDnLen, in a
CTC definitions file (see Section 1.5). Note that this maximum length
includes the null termination character (NUL).

2-36 CTC Routine Specifications

ctcGetChannellnformation

= switchSpecificSupport

This 32-bit integer identifies any additional switch-specific CTC routines that
are supported. These are routines provided as extensions to the CTC API.

Refer to the switch-specific appendixes for more information about the values
returned in this field.

Note that no values are returned in this field if, when you assigned the

channel, you specified the value ctcK_None in the APlextensions field of the
ctcAssignData structure.

CTC Routine Specifications 2-37

ctcGetDoNotDisturb

ctcGetDoNotDisturb
Get Information About Do Not Disturb

Formatin C

unsigned int ctcGetDoNotDisturb (ctcChanld channel,
unsigned int *DNDMode)

Description

This routine returns information about the Do-Not-Disturb setting for the
assigned device. It provides information on the current setting as set by the user,
either manually or with the ctcSetDoNotDisturb routine.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

DNDMode
type: integer (unsigned)
access: write only

mechanism: by reference

This argument is the address of a 32-bit integer into which CTC writes one of
the values in the following table:

Value Description
ctcK_On Indicates that Do-Not-Disturb on the assigned device is set on
ctcK_Off Indicates that Do-Not-Disturb on the assigned device is set off

2-38 CTC Routine Specifications

ctcGetEvent

ctcGetEvent
Get Information About Event and State Changes

Format in C
unsigned int ctcGetEvent (ctcChanld channel,
ctcEventData *eventData,
unsigned int dontWait)
Description

The ctcGetEvent routine returns information on telephone activity on the
assigned device, or on devices associated with a monitor channel.

It can return details of:

- Call states

= Call events

= Agent status events

= Call types

= Call reference

= Other parties involved in the telephone call
= Application data stored with the call

= Devices monitored on a monitor channel

= Time and date at which an event occurred

The amount of information that CTC returns depends on the information
provided by the switch. This may be different for a call that is internal to the
switch and for an outside call, depending on the type of trunks connected to the
switch.

Calling ctcGetEvent

For all assigned devices except monitor channels, you must set monitoring on
with the ctcSetMonitor routine before you use this routine.

Note that if you post a ctcGetEvent request and the previous ctcGetEvent
request has not yet completed, a ctcEventlnProgress error is returned.

CTC Routine Specifications 2-39

ctcGetEvent

Restriction

ctcGetEvent returns information only when there is call activity. Dialogic
recommends you use a multithreaded program to call this routine so that your
application can continue (see Section 1.9.4).

This does not apply to Windows 3.1/3.11 applications. To return telephone
activity and call other routines, Windows 3.1/3.11 applications must use
ctcWinGetEvent. See the description of ctcWinGetEvent for more information.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

eventData
type: ctcEventData
access: write only

mechanism: by reference
This argument contains the address of the following fixed-format structure:

ct cEvent Dat a{

unsi gned i nt refld;

unsi gned i nt netCal |l | d;

unsi gned i nt ol dRef 1 d;

unsi gned i nt ol dNet Cal | | d;

unsi gned i nt state;

unsi gned i nt event ;

unsi gned i nt event Qualifier;

unsi gned i nt type;

unsi gned i nt ot her Part yType;

unsi gned i nt ot herPartyQualifier;
ctcDeviceString otherParty;

unsi gned i nt ot her Par t yTr unk;
unsi gned i nt ot her Part yGroup;
unsi gned i nt thirdPartyType;

unsi gned i nt thirdPartyQualifier;
ctcDeviceString thirdParty;

unsi gned i nt thirdPartyTrunk;
unsi gned i nt thi rdPartyG oup;
unsi gned i nt cal | edPartyType;
unsi gned i nt cal l edPartyQualifier;
ctcDeviceString calledParty;

unsi gned i nt cal | edPart yTrunk;
unsi gned i nt cal | edPartyG oup;

2-40 CTC Routine Specifications

b

ctcGetEvent

ctcAppl String appl i cati onDat a;
ctcDeviceString nonitorParty;
ctcDeviceString nestedMnitorChannel;
unsi gned i nt agent Mode;
ctcDeviceString agentld;
ctcDeviceString agent G oup;
ctcDeviceString agentDat a;
ctcDeviceString | ogical Agent;
ctcDeviceString dtnfDigits;

unsi gned i nt originati ngPartyType;

unsi gned i nt originatingPartyQualifier;
ctcDeviceString originatingParty;

unsi gned i nt origi nati ngPartyTrunk;
unsi gned i nt origi nati ngPartyG oup;
unsi gned i nt secd dRef | d;

unsi gned i nt cal | sQueued;

ct cAccount I nfo account | nf o;

ctcTi neSt anp ti meSt anp;

unsi gned i nt pri vat eDat a;

The strings in this structure are all null-terminated.

The ctcEventData structure contains the following:

refld

This field contains the call reference identifier for a particular call. Use this
call reference when you use CTC routines that affect existing calls. For
example, when you use CTC routines to transfer a call, cancel a call, or create
a conference call.

Note that the call reference is supplied by the switch but does not necessarily
remain constant for the duration of the call. For example, if party A answers
an incoming call and then transfers the call to party B, the call reference
reported for A (the original call) and B (the transferred call) may not be the
same. Do not rely on this mechanism to trace calls from one party to another.

netCallld

This 32-bit field returns a network call identifier. This is used to identify a
call that is handled by more than one switch in a network of switches. For
example, for overflow calls.

Information in the netCallld field is returned only if the switch can supply
the information.

CTC Routine Specifications 2-41

ctcGetEvent

e oldRefld

If the reference identifier for a call changes, this field contains the previous
call reference. A call reference can change if there is new telephony activity
on the assigned device. For example, if the call on the assigned device is
included in a conference call.

Information in the oldRefld field is returned only if the switch can supply the
information.

< oldNetCallld

This 32-bit field returns the previous network call identifier. This is used to
identify which switch first receives a call when the call is handled by more
than one switch.

Information in the oldNetCallld field is returned only if the switch can supply
the information.

= state

This 32-bit field contains a value that identifies the state of the current call.
Table 2—-4 shows the possible states of a call, and the corresponding values
returned. These call state literals are supplied in a CTC definitions file (see
Section 1.5).

Example state transitions for an outbound call are as follows:
Null/Initiate — Deliver/Fail - Active - Initiate/Null

For a typical incoming call, the state transitions are as follows:
Null - Receive - Active - Initiate/Null

Note that if a call you are monitoring is routed over a trunk line, you do not
necessarily see the Active state on an outbound call (depending on the type of
trunk connected to the switch).

Refer to the switch-specific appendixes for more information about the call
states supplied by particular switches, and for details of the states returned
for different events.

2-42 CTC Routine Specifications

ctcGetEvent

Table 2—4 Call States Returned by ctcGetEvent

State

Value

Description

Active
Deliver

Fail

Hold
Initiate

Null

Queued

Receive

Unavailable

ctcK_ActiveState
ctcK_DeliverState

ctcK_FailState

ctcK_HoldState
ctcK_InitiateState

ctcK_NullState

ctcK_QueueState

ctcK_ReceiveState

ctcK_UnavailableState

The call is active.

The user has finished dialing and is
waiting for an answer from the
destination device.

The switch could not complete the call
because, for example, the user has
dialed a busy device or a nonexistent
number, or there are insufficient
switch resources available to complete
the call.

The call has been put on hold.

An outbound call is being placed.
Typically, the assigned device is
off-hook and receiving a dial tone.

Signals the end of a call. The Null
state is also known as ldle.

A call has entered the group queue
you are monitoring, or an outbound
call from the assigned device has been
queued.

The assigned device has received a
call, and is ringing.

The assigned device is unavailable,
because, for example, the user has left
the telephone off-hook for too long, or
the telephone is in maintenance.

event

This 32-bit integer identifies the call event. Table 2-5 shows the possible
agent event values returned, and Table 2—6 shows the possible call event
values returned.

When ctcGetEvent returns the information, compare the values returned in
the integer with the call event literals supplied in a CTC definitions file (see

Section 1.5).

CTC Routine Specifications 2-43

ctcGetEvent

Table 2-5 Agent Events Returned by ctcGetEvent

Event-Value

Description

ctcK_AgentLoggedOn
ctcK_AgentLoggedOff
ctcK_AgentModeChange

The agent has logged in.
The agent has logged out.

The work mode for an agent has changed. Check the
agentMode field for a value that identifies the new
work mode.

Table 2—6 Call Events Returned by ctcGetEvent

Event-Value

Description

ctcK_BacklInService
ctcK_Calllnformation

ctcK_DestBusy
ctcK_DestChanged

ctcK_Destlnvalid

ctcK_DestNotObtainable

ctcK_DestSeized

ctcK_Diverted

ctcK_Error

2-44 CTC Routine Specifications

The device has returned to service.

The account information or authorization information
associated with a call has changed.

The destination device is busy (engaged).

The call from the assigned device was not answered
on the original destination and has been redirected to
another destination. For example, if the original
destination had set call forward, the call would not
have been presented at the original destination but
would have been routed directly to the new
destination.

The attempted call has failed because the destination
device is incompatible. For example, making a call
from a voice set to a data set.

The call could not be completed, probably because the
wrong number was dialed.

A call has been successfully dialed. If this call is
external to the ACD, the network number has been
verified and the outbound trunk seized. This does not
indicate that the other end is actually ringing or
answered.

An incoming call on the assigned device has been
diverted to another destination.

The call has failed for an unspecified reason. For more
information, check the eventQualifier field. (Refer to
the switch-specific appendixes for a description of
event qualifiers.)

ctcGetEvent

Table 2—6 Call Events Returned by ctcGetEvent (Continued)

Event-Value

Description

ctcK_InboundcCall
ctcK_Offhook
ctcK_OffhookPrompt

ctcK_OpAnswered

ctcK_OpConferenced

ctcK_OpDisconnected
ctcK_OpHeld
ctcK_OpRetrieved
ctcK_Other

ctcK_OutOfService
ctcK_Private

ctcK_TpAnswered

ctcK_TpConferenced

ctcK_TpDisconnected
ctcK_TpRetrieved

ctcK_TpSuspended

A new call has arrived at the assigned device.
A new call has been made from the assigned device.
This event indicates one of the following:

= You have tried to place a call from a 2500 set but
you need to take the phone off-hook for the call to
continue

= The user invoked ringback, and the switch is
signaling that the callback has matured

= The switch is signaling because you kept a call on
hold for too long, or have hung up with a call on
hold

The other party answered the call from the assigned
device.

Another party on the call has created a conference
call.

The other party hung up the call.
The other party has placed the call on hold.
The other party has retrieved the held call.

An event has occurred. This event is not significant
for basic call processing and can be generated by a
number of possible causes. See the event qualifier
item for further information on this event, but
remember the event qualifiers are switch-dependent.

The device is out of service.

Data has been sent by the switch. The type of data
sent is specific to the switch manufacturer.

This party has answered an incoming call on the
assigned device.

This party has included another party in a conference
call.

This party has disconnected the current call.

This party has retrieved a call that was either on hold
or in the call-waiting queue.

This party has placed a call on hold.

CTC Routine Specifications 2-45

ctcGetEvent

Table 2—6 Call Events Returned by ctcGetEvent (Continued)

Event-Value Description

ctcK_Transferred The call has been transferred from another device.
This event is returned to both parties on the new call.

ctcK_Unavailable The device has become unavailable (out of service).
This could be:

= A temporary condition, for example, because the
device has remained off-hook and listening to a
dial tone for too long

< A more permanent condition if the device is in
maintenance

< eventQualifier

This 32-bit integer provides more detailed information on certain events. For
a description of each event qualifier, see the switch-specific appendixes.

When ctcGetEvent returns the information, compare the values returned in
the integer with the event qualifier literals supplied in a CTC definitions file
(see Section 1.5).

- type

This 32-bit integer identifies the type of call in progress. The call type helps
to clarify the result of the call event and state.

For a description of each call type, see the switch-specific appendixes.

When ctcGetEvent returns the information, compare the values returned in
the integer with the event qualifier literals supplied in a CTC definitions file
(see Section 1.5).

2-46 CTC Routine Specifications

Other Party

ctcGetEvent

The other party fields return information about the party that the user of the
assigned device is calling or to which they are connected. Table 2—7 describes
the information returned in the other party fields.

Table 2—7 Other Party Information

Field

Description

otherPartyType

otherParty

otherPartyQualifier

otherPartyTrunk

otherPartyGroup

This 32-bit field identifies the number for the other party
as a Calling Line ID (CLID, DN, or Dialed Number
Identification Service (DNIS). It contains one of the
following values:

ctcK_Lineld

ctcK_Dn

ctcK_Dnis
This field contains the CLID, DN, or DNIS for the other
party.
The maximum length for the CLID, DN, or DNIS, is
specified by the literal ctcMaxDnLen in a CTC definitions
file (see Section 1.5). Note that this maximum length
includes the null termination character (NUL).
This 32-bit field provides additional information about the
other party. For more information, refer to the
switch-specific appendixes.
This 32-bit field contains the trunk line number from the
switch.

This 32-bit field contains the trunk group number.

CTC Routine Specifications 2-47

ctcGetEvent

e Third Party

The third party fields return information about any third party involved with
the current call on the assigned device. Table 2-8 describes the third party
fields.

Table 2—8 Third Party Information

Field Description

thirdPartyType This 32-bit field identifies the number for the third party as
a CLID, DN, or DNIS. It contains one of the following
values:

ctcK_Lineld
ctcK_Dn
ctcK_Dnis

thirdParty This field contains the CLID, DN, or DNIS for the third
party.
The maximum length for the CLID, DN, or DNIS is
specified by the literal ctcMaxDnlLen in a CTC definitions
file (see Section 1.5). Note that this maximum length
includes the null termination character (NUL).

thirdPartyQualifier This 32-bit field provides additional information about the
third party. For details of the information supplied in this
field, see your switch-specific appendix.

thirdPartyTrunk This 32-bit field contains the trunk line number from the
switch.
thirdPartyGroup This 32-bit field contains the trunk group number.

2-48 CTC Routine Specifications

ctcGetEvent

Called Party

The called party fields return information about the party originally called.
For example, if A calls B, and then B transfers the call to C (the monitored
device), the called party is B.

Table 2-9 describes the called party fields.

Table 2-9 Called Part Information

Field Description

calledPartyType This 32-bit field identifies the number for the called party
as a CLID, DN, or DNIS. It contains one of the following
values:

ctcK_Lineld

ctcK_Dn
ctcK_Dnis

calledParty This field contains the CLID, DN, or DNIS for the called
party.
The maximum length for the CLID, DN, or DNIS is
specified by the literal ctcMaxDnLen, in a CTC definitions

file (see Section 1.5). Note that this maximum length
includes the null termination character (NUL).

calledPartyQualifier This 32-bit field provides additional information about the
called party. For more information, see your switch-specific

appendix.

calledPartyTrunk This 32-bit field contains the trunk line number from the
switch.

calledPartyGroup This 32-bit field contains the trunk group number.

CTC sometimes returns a null datatype for the other party, third party, and
called party fields. In such cases, the switch cannot identify the parties
involved in the call. Check the switch-specific appendixes for more
information.

applicationData

This field returns data that has been associated with a call (for example, by
the ctcMakeCall routine) and stored by the switch. The data is returned as a
character string.

Refer to the switch-specific appendixes to check whether your switch
supports application data.

The maximum length for applicationData is specified by the literal

CTC Routine Specifications 2-49

ctcGetEvent

ctcMaxDnLen in a CTC definitions file (see Section 1.5). Note that this
maximum length includes the null termination character (NUL).

< monitorParty

Information is returned in this field for monitor channels. You can assign to a
monitor channel to receive events for a number of devices on a single channel
(see ctcAssign for more information).

The device number returned in this field identifies the device for which event
information is returned.

The maximum length for monitorParty is specified by the literal
ctcMaxDnLen in a CTC definitions file (see Section 1.5). Note that this
maximum length includes the null termination character (NUL).

e nestedMonitorChannel

This field returns a device number that identifies the nested monitor-channel
for which event information is returned. A nested monitor-channel is a
channel that is monitored by another monitor channel.

The maximum length for nestedMonitorChannel is specified by the literal
ctcMaxDnLen in a CTC definitions file (see Section 1.5). Note that this
maximum length includes the null termination character (NUL).

= agentMode

This 32-bit field returns the current work mode for an agent. It can contain
one of the following values:

ctcK_AgentReady
ctcK_AgentNotReady
ctcK_AgentOtherWork
ctcK_AgentAfterCallWork
ctcK_AgentLogin
ctcK_AgentLogout

Check the switch-specific appendixes for details of any other, switch-specific
values that can be returned in this field.

< agentld

When the channel is assigned to a queue, this field returns the identifier (1D)
(for example, an extension number) for an agent associated with that queue.
Refer to the switch-specific appendixes to check whether your switch
supports agent IDs.

The maximum length for agentld is specified by the literal ctcMaxDnLen in a

2-50 CTC Routine Specifications

ctcGetEvent

CTC definitions file (see Section 1.5). Note that this maximum length
includes the null termination character (NUL).

agentGroup

This field contains the DN for a group (ACD group or queue). Refer to the
switch-specific appendixes to check whether your switch returns information
in this field.

The maximum length for agentGroup is specified by the literal ctcMaxDnLen
in a CTC definitions file (see Section 1.5). Note that this maximum length
includes the null termination character (NUL).

agentData

This field returns agent data, for example, an agent’s password. Refer to the
switch-specific appendixes to check whether your switch returns information
in this field.

The maximum length for agentData is specified by the literal ctcMaxDnlLen
in a CTC definitions file (see Section 1.5). Note that this maximum length
includes the null termination character (NUL).

logicalAgent

This field returns the DN for a logical agent. Refer to the switch-specific
appendixes to check whether your switch returns information in this field.

The maximum length for logicalAgent is specified by the literal ctcMaxDnlLen
in a CTC definitions file (see Section 1.5). Note that this maximum length
includes the null termination character (NUL).

dtmfDigits

For channels assigned to route points, this field returns DTMF digits that are
collected as a call is routed. Refer to the switch-specific appendixes to check
whether your switch returns DTMF digits in this field.

The maximum length for dtmfDigits is specified by the literal ctcMaxDnLen
in a CTC definitions file (see Section 1.5). Note that this maximum length
includes the null termination character (NUL).

Originating Party
The originating party fields contain details of:
= The point of entry on the switch for an inbound call

= The point of exit on the switch for an outbound call

CTC Routine Specifications 2-51

ctcGetEvent

For example, the trunk number on which the switch received an inbound call.
CTC returns information in the originating party fields only if:

— The state field contains the value ctcK_ReceiveState or ctcK_DeliverState
— The switch can provide the information

For details of support, check the switch-specific appendixes.

Table 2—-10 describes the originating party fields.

Table 2-10 Originating Party Fields

Field Description

originatingPartyType This 32-bit field identifies the originating number as
a CLID, DN, or DNIS. It contains one of the
following values:

ctcK_Lineld
ctcK_Dn
ctcK_Dnis

originatingPartyQualifier This 32-bit field provides additional information
about the originating party. For more information,
refer to the switch-specific appendixes.

originatingParty This field contains the actual CLID, DN, or DNIS for
the originating party.

The maximum length for the CLID, DN, or DNIS, is
specified by the literal ctcMaxDnLen in a CTC
definitions file (see Section 1.5). Note that this
maximum length includes the null termination
character (NUL).

originatingPartyTrunk If the originating party is a trunk, this 32-bit field
contains the trunk line number as defined on the
switch.

originatingPartyGroup If the originating party is a trunk group, this 32-bit
field contains the trunk group number as defined on
the switch.

e secOldRefld

If the reference identifier for a call changes because it has been transferred or
merged in a conference call, this field contains the call reference for the
consultation call.

For example, if A calls B then includes C in a conference call, the following
call reference identifiers are returned when the conference call has been

2-52 CTC Routine Specifications

ctcGetEvent

established:

This field... Contains...

refld The call reference for the conference call between A, B, and C
oldRefld The call reference for the original call made by A to B
secOldRefld The call reference for the consultation call made by Ato C

callsQueued

If the call is placed in a queue, this 32-bit field can return the total number of
calls in the queue.

This value is returned only if it can be provided by the switch. Check the
switch-specific appendixes for details.

accountinfo

This field contains 32 bytes of free-format data. Refer to your switch
manufacturer for details of the type of account information that can be
returned.

timeStamp

By default, this field contains the date and time the CTC server received the
event. It can also return the date and time that the switch processed the
event, if the communications link is configured to return this information (for
details, refer to the CT-Connect Installation and Administration Guide for
your CTC server platform) and if your switch can provide the information
(refer to the switch-specific appendixes for details).

It contains a fixed-format structure:

ct cTi neSt anp{

short year;
short nmont h;
short day;
short hour;
short m nut e;
short second;
short mllisec;
short mndi ff;
unsi gned intutc;

CTC Routine Specifications 2-53

ctcGetEvent

The following table describes the fields in the ctcTimeStamp structure:

Field Description

year Four-digit value identifying the year. For example, 1998.

month A value from 1 through 12.

day A value from 1 through 31.

hour A value from 0 through 23.

minute A value from 0 through 59.

second A value from 0 through 59.

millisec A value from 0 through 999.

mindiff Minimum differential between the current time and GMT. A value
is returned in this field for UTC time only.

utc A non-zero value in this field indicates that the structure provides

UTC time. If this field is empty, the structure provides absolute
time.

- privateData

A value in this field indicates that CTC has received from the switch data
relating to the event. The type of data returned is specific to individual

switches.

For this version of CTC, private data is supported by CSTA switches only. To
retrieve the data, you use the ctcCstaGetPrivateEventData routine before
reposting ctcGetEvent. Refer to Appendix B for details.

For other switches, the privateData field returns null data.

dontWait
type: integer (unsigned)
access: read only

mechanism: by value

This 32-bit integer is a Boolean value which, when set, allows an application to
poll for events without having to create a separate thread. If there is no new
event data, the routine will not block and a ctcNoEvent condition value is

returned.

2-54 CTC Routine Specifications

States and Events for Groups

ctcGetEvent

If you have assigned a channel to a group queue on the switch, CTC can provide

information on:

= The call reference for each call joining the queue

= Calls leaving the queue

= The identity of the other party (DN, Calling Line ID, or trunk) when
available, for calls entering or leaving the queue

= The destination for a call leaving the queue

Table 2-11 lists the states and events that CTC returns if you are monitoring a

channel assigned to a group (queue).

Table 2-11 Queue Monitoring

State Event Cause

Null ctcK_OpDisconnected The caller has hung up.

Queued ctcK_InboundcCall A call has joined the queue.

Queued ctcK_Diverted The call has been moved to another queue.

Deliver ctcK_DestSeized The call has been delivered to an ACD
agent.

Active ctcK_OpAnswered The agent has answered.

Error for Event Data Lost

If a number of events occur at the same time, it is possible for the CTC server to
lose an event message. Although this is unlikely, the CTC server will return a
ctcEventDatalost error for any messages lost.

CTC Routine Specifications 2-55

ctcGetMessageWaiting

ctcGetMessageWaiting
Get Information About the Message Waiting Indicator

Formatin C

unsigned int ctcGetMessageWaiting (ctcChanld channel,
unsigned int *messageWaitingMode)

Description

This routine returns information about the current setting for the message
waiting indicator. This indicator is usually a lamp on the telephone set which is
lit if there is a message waiting.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

messageWaitingMode

type: integer (unsigned)
access: write only
mechanism: by reference

This argument is the address of a 32-bit integer that receives one of the values in
the following table:

Value Description

ctcK_On Indicates that the message waiting indicator for the assigned device
is set on

ctcK_Off Indicates that the message waiting indicator for the assigned device
is set off

2-56 CTC Routine Specifications

ctcGetMonitor

ctcGetMonitor
Get Information About the Monitoring State

Formatin C

unsigned int ctcGetMonitor (ctcChanld channel,
unsigned int *monitorMode)

Description

This routine returns information about the current monitoring state of the
assigned device. The monitoring state can be changed with the ctcSetMonitor

routine.
Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

monitorMode

type: integer (unsigned)
access: write only
mechanism: by reference

This argument is the address of a 32-bit integer that receives one of the values in
the following table:

Value Description
ctcK_On Indicates that monitoring on the assigned device is set on
ctcK_Off Indicates that monitoring on the assigned device is set off

CTC Routine Specifications 2-57

ctcGetRouteQuery

ctcGetRouteQuery
Get Route Query Messages from the Switch
Format in C
unsigned int ctcGetRouteQuery (ctcChanld channel,
ctcRouteData *routeData,
unsigned int dontWait)
Description

The ctcGetRouteQuery routine requests that the switch passes a route request
to your application whenever a call reaches the assigned route point.

When a call comes in at the assigned route point, ctcGetRouteQuery presents
the call to your application so that the call can be routed. If supplied by the
switch, this routine also returns information on the other parties involved in the
call and the number dialed by the caller:

= For calls internal to the switch, this routine returns the extension number for
the calling party.

= For an external call (connected to a central office or to another networked
switch through a trunk), this routine returns the following information (if the
switch and telephone network can supply the information):

The group number (for the trunk in use on the switch)

The calling line 1D, which identifies the device that originated the call

The dialed number

Application data passed with the call

Call Routing

Call routing allows the application to redirect incoming calls for a route point to
another destination. The application assigns a channel to a route point (the
route point has a dialable number associated with it, but there is no real,
physical device). Whenever a call reaches this route point, the switch passes a
route request to the CTC application.

When the switch passes a route request, ctcGetRouteQuery returns data
relating to the call, including a route reference. The application can then decide
on a new destination for the call and supply this and the route reference as
parameters to ctcRespondToRouteQuery. If the new destination is valid, the call
is redirected.

2-58 CTC Routine Specifications

ctcGetRouteQuery

Choosing Not to Reroute a Call

If you do not want the application to reroute a call presented by
ctcGetRouteQuery, post a call to the ctcRespondToRouteQuery routine and
specify the address of a zero-length character string with the newCalledNumber
argument.

How to Call ctcGetRouteQuery
Use the following sequence of routines:

1. ctcAssign to assign the channel to a route point acting as a device. The route
point has a DN associated with it, but there is no real, physical device.

2. If your switch allows you to enable or disable call routing for a route point,
ctcSetRoutingEnable to enable routing.

3. ctcGetRouteQuery to be notified of route requests for calls to the assigned
route point.

4. ctcRespondToRouteQuery to supply a route for the call.

For more information, refer to the descriptions of the ctcSetRoutingEnable and
ctcRespondToRouteQuery routines.

ctcRoutelnProgress

If you post a ctcGetRouteQuery request before the previous ctcGetRouteQuery
request has completed, a ctcRoutelnProgress error is returned.

Restriction

ctcGetRouteQuery returns only when it receives a route request from the switch.
Dialogic recommends you use a multithreaded program to call this routine so
that your application can continue to call other routines (see Section 1.9.4).

This does not apply to Windows applications. To return route query data and
continue calling other routines, Windows applications must use
ctcWinGetRouteQuery. See the description of ctcWinGetRouteQuery for more

information.
Arguments

channel

type: ctcChanld

access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

CTC Routine Specifications 2-59

ctcGetRouteQuery

routeData
type: ctcRouteData
access: write only

mechanism: by reference

This argument contains the address of a fixed-format structure, for which you
allocate memory of type ctcRouteData. The structure is defined ina CTC
definitions file (see Section 1.5) and is formatted as follows:

ct cRout eDat a{

unsi gned int
unsi gned int
unsi gned int
unsi gned int
ctcDevi ceString
unsi gned int
unsi gned int
unsi gned int
ctcDevi ceString
unsi gned int
unsi gned int
unsi gned int
ctcDevi ceString
unsi gned int
unsi gned int
ctcAppl String
ctcDevi ceString
ct cTi neSt anp
unsi gned int

b

rout el d;

refld;

spar e001;

ot her Part yType;
ot her Party;

ot her Par t yTr unk;
ot her Part yGr oup;
thi rdPartyType;
thirdParty;

thi rdPart yTrunk;
thi rdPart yG oup;
cal | edPart yType;
cal l edParty;

cal | edPart yTrunk;
cal | edPartyGroup;
appl i cati onDat a;
dtnfDigits;

ti meSt anp;

pri vat eDat a;

CTC returns information in one or more of the fields described in Table 2-12.

Table 2-12 Information Returned by ctcGetRouteQuery

Field Contents

routeld The route identifier for the call to be routed. Use this identifier
to specify a new route for the call with ctcRespondToRouteQuery.

refld The call reference returned by ctcGetEvent.

spare001 Null data.

otherPartyType A value that identifies the number of the other party as a CLID,
DN, or DNIS.

otherParty The CLID, DN, or DNIS for the other party.

otherPartyTrunk A trunk line number from the switch for the other party.

otherPartyGroup A trunk group number from the switch for the other party.

A value that identifies the number of an additional party on the
call as a CLID, DN, or DNIS.

thirdPartyType

2-60 CTC Routine Specifications

ctcGetRouteQuery

Table 2-12 Information Returned by ctcGetRouteQuery (Continued)

Field

Contents

thirdParty

thirdPartyTrunk
thirdPartyGroup
calledPartyType

calledParty
calledPartyTrunk
calledPartyGroup
applicationData
dtmfDigits
timeStamp

privateData

The CLID, DN, or DNIS of an additional party involved in the
call.

A trunk line number from the switch for the third party.
A trunk group number from the switch for the third party.

A value that identifies the number originally dialed as a CLID,
DN, or DNIS.

The CLID, DN, or DNIS originally dialed.

A trunk line number from the switch for the called party.
A trunk group number from the switch for the called party.
Data associated with the call to be routed.

DTMEF digits collected as the call is routed.

Time the route request was processed either by the CTC server
or by the switch (depending on the configuration of the link).

A value to indicate whether CTC has received private data from
the switch.

For detailed information about the values returned in these fields, refer to the
description of ctcGetEvent. For details of the fields supported by your switch,
refer to the switch-specific appendixes.

dontWait
type: integer (unsigned)
access: read only

mechanism: by value

This 32-bit integer is a Boolean value which, when set, allows an application to
poll for information without having to create a separate thread. If there is no
new route data, the routine will not block and a ctcNoRoute status value is

returned.

CTC Routine Specifications 2-61

ctcGetRoutingEnable

ctcGetRoutingEnable
Get the Routing State for a Device

Formatin C

unsigned int ctcGetRoutingEnable (ctcChanld channel,
unsigned int *routingMode)

Description

The ctcGetRoutingEnable routine returns the routing state for the assigned
route point:

« If routing is enabled, the switch passes route requests to CTC when it
receives calls for the route point.

= |If routing is disabled, the switch does not pass route requests to CTC when it
receives calls for the route point.

To enable or disable routing for a route point, use ctcSetRoutingEnable. Refer to
the description of ctcSetRoutingEnable for more information.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype and identifies the route point for which
you want to receive route requests.

Specify the channel identifier returned by ctcAssign for the route point.

2-62 CTC Routine Specifications

ctcGetRoutingEnable

routingMode

type: integer (unsigned)
access: write only
mechanism: by value

This argument is the address of a 32-bit integer that receives one of the values in
the following table:

This value... Indicates that routing is...
ctcK_On Enabled
ctcK_Off Disabled

CTC Routine Specifications 2-63

ctcHangupCall

ctcHangupCall
Disconnect a Call

Formatin C

unsigned int ctcHangupCall (ctcChanld channel,
unsigned int callRefld)

Description

The ctcHangupCall routine clears the active call on the assigned device, and
returns the device to the null state.

Note that if you make a consultation call and then use ctcHangupCall, the
original call may be transferred, or the switch may recall you. To end a
consultation call and reconnect to the original party, use ctcReconnectHeld.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

callRefld
type: integer (unsigned)
access: read only

mechanism: by value

The callRefld argument contains an optional value. If you have set monitoring
on and can therefore identify the call reference, specify the call reference
identifier for the assigned device returned by ctcGetEvent for ctcWinGetEvent,
or the associated routine such as ctcMakeCall.

If you have not set monitoring on, you cannot specify a valid call reference value
for the call you wish to hang up. Specify zero and the switch will hang up the
current active call on the assigned device.

2-64 CTC Routine Specifications

ctcHoldCall

ctcHoldCall
Put Current Call on Hold

Formatin C

unsigned int ctcHoldCall (ctcChanld channel,
unsigned int callRefld)

Description

The ctcHoldCall routine puts the current call on the assigned device on
consultation hold. Calls placed on consultation hold can be included in a
conference call or transferred to another extension. If the call is in the initiate
state, use ctcRetrieveHeld to retrieve the held call. If the user has made another
call after placing the original call on hold, use ctcReconnectHeld to end the
consultation call and reconnect to the held call.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

callRefld
type: integer (unsigned)
access: read only

mechanism: by value

This 32-bit integer contains the call reference identifier for the call you are
placing on hold. The call reference identifier is a value returned by ctcGetEvent
or ctcWinGetEvent for the active call (the call to be held).

CTC Routine Specifications 2-65

ctcMakeCall

ctcMakecCall

Make a Call

Format in C

unsigned int ctcMakeCall (ctcChanld channel,

ctcDeviceString calledNumber,
ctcApplString applicationData,
unsigned int *callRefld)

Description

The ctcMakeCall routine makes a call from the device to which the channel is
assigned to any number that the switch recognizes as valid.

You identify the device that you want to call with the calledNumber argument.
This argument specifies the dialable number of the device.

On-hook Dialing

Some switches provide on-hook dialing. This means that a user can initiate a
call and place a call without lifting the handset. The associated telephone must
be a feature phone with a loudspeaker, and the switch must be able to set the
telephone off-hook. The steps for on-hook dialing are as follows:

1. The user types the destination number at the keyboard, without lifting the
handset.

2. The switch makes the connection to the destination telephone, and rings the
originating telephone.

3. The switch sets the telephone off-hook, and the destination telephone starts
ringing.

Limited On-Hook Dialing

Some switches provide a limited form of on-hook dialing for users with standard
(nonfeature) telephones. The steps for limited on-hook dialing are as follows:

1. The caller dials from the keyboard without picking up the handset.

2. The switch makes the connection to the destination telephone, and rings the
originating telephone.

3. The caller picks up the handset, and the destination telephone starts ringing.

4. If the switch cannot signal the telephone, the user must take the device
off-hook before making the call.

2-66 CTC Routine Specifications

ctcMakeCall

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

calledNumber

type: ctcDeviceString
access: read only
mechanism: by reference

This argument is the address of a character string that contains the number of
the device you want to call. The ASCII string can contain any combination of
numbers 0 through 9 and the characters * and #.

The maximum length for calledNumber is specified by the literal ctcMaxDnLen
in a CTC definitions file (see Section 1.5). Note that this maximum length
includes the null termination character (NUL).

applicationData

type: ctcApplString
access: read only
mechanism: by value

You use this argument to associate data, for example, customer reference
information or account details, with the call. The argument is the address of a
NUL-terminated character string.

If the call is successful, the data is stored by the switch and reported on
subsequent events until the call is terminated.

If you do not want to associate data with the call, pass a zero-length string.

callRefld
type: integer (unsigned)
access: write only

mechanism: by value

This argument is the address of a 32-bit integer that receives the call reference
identifier for the call.

CTC Routine Specifications 2-67

ctcMakePredictiveCall

ctcMakePredictiveCall
Make Predictive Calls

Format in C
unsigned int ctcMakePredictiveCall (ctcChanlid channel,

ctcDeviceString calledNumber,
unsigned int allocation,
ctcApplString applicationData,
unsigned int *callRefld,
unsigned int numberOfRiIngs)

Description

The ctcMakePredictiveCall routine allows a virtual party on a switch to initiate
calls on behalf of a user or group of users. Depending on your particular switch,
at some time during the progress of the call, the call is allocated to a physical
device. Only when the called device answers (or, for example, the phone rings a
preconfigured number of times) does the call get put through to the user.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

calledNumber

type: ctcDeviceString
access: read only
mechanism: by reference

This argument is the address of a character string that contains the number of
the device you want to call. The ASCII string can contain any combination of
numbers 0 through 9 and the characters * and #.

The maximum length for calledNumber is specified by the literal ctcMaxDnLen
in a CTC definitions file (see Section 1.5). Note that this maximum length
includes the null termination character (NUL).

2-68 CTC Routine Specifications

ctcMakePredictiveCall

allocation
type: integer (unsigned)
access: write only

mechanism: by reference

This 32-bit integer contains a value that you specify to indicate when the call is
successful (for example, when the called device answers, or when the phone
rings a set number of times).

To use the switch’s default processing for the call, specify the value
ctcK_AllocDefault. For details of other values that you can specify, refer to the
switch-specific appendixes.

applicationData

type: ctcApplString
access: read only
mechanism: by value

You use this argument to associate data, for example, customer reference
information or account details, with the call. The argument is the address of a
NUL-terminated character string.

If the call is successful, the data is stored by the switch and reported on
subsequent events until the call is terminated.

If you do not want to associate data with the call, pass a zero-length string.

callRefld
type: integer (unsigned)
access: write only

mechanism: by reference

This argument is the address of a 32-bit integer that receives the call reference
identifier for the new call.

numberOfRings

type: integer (unsigned)
access: read only
mechanism: by value

This 32-bit integer specifies the number of times the destination device rings
before the call fails. For details of the range of values you can pass with this
argument, refer to the switch-specific appendixes.

Specify the value zero for the default number as defined on the switch.

CTC Routine Specifications 2-69

ctcPickupcCall

ctcPickupCall
Pick Up a Call from Another Extension

Format in C
unsigned int ctcPickupCall (ctcChanld channel,
unsigned int callRefld,
ctcDeviceString calledNumber)
Description

The ctcPickupCall routine allows you to answer a call on an extension other
than the one on which it is ringing.

If the ringing extension is in the same pickup group (as defined within the
switch), this routine does not require the calledNumber argument specifying the
dialable number for the ringing device.

If the ringing extension is not in the pickup group, you have to specify the
dialable number for the ringing device (Directed Call Pickup).

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

callRefld
type: integer (unsigned)
access: read only

mechanism: by value

This argument is a 32-bit integer that contains a call reference identifier for the
ringing call. The call reference identifier for the ringing call is returned by
ctcGetEvent or ctcWinGetEvent.

2-70 CTC Routine Specifications

ctcPickupCall

calledNumber

type: ctcDeviceString
access: read only
mechanism: by reference

This argument is the address of a character string that identifies the ringing
device. The value contained in the character string can be 0 to indicate that the
call is being picked up from the local group. The maximum length for
calledNumber is specified by the literal ctcMaxDnLen, in a CTC definitions file
(see Section 1.5). Note that this maximum length includes the null termination
character (NUL).

CTC Routine Specifications 2-71

ctcReconnectHeld

ctcReconnectHeld
Reconnect a Call on Hold

Format in C
unsigned int ctcReconnectHeld (ctcChanld channel,
unsigned int heldCallRefld,
unsigned int activeCallRefld)
Description

The ctcReconnectHeld routine disconnects a consultation call and reconnects a
held call. It has the same effect as using both ctcCancelCall and
ctcRetrieveHeld. The following example sequence shows how to use
ctcReconnectHeld:

1. Bcalls A, and A answers.
2. Acalls C using ctcConsultationCall which automatically places B on hold.

3. A uses ctcReconnectHeld to end the call to C and reconnect the call with B.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

heldCallRefld
type: integer (unsigned)
access: read only

mechanism: by value

This 32-bit integer contains the call reference identifier for the held call, as
returned by ctcGetEvent or ctcWinGetEvent.

2-72 CTC Routine Specifications

ctcReconnectHeld

activeCallRefld

type: integer (unsigned)
access: read only
mechanism: by value

This 32-bit integer contains the call identifier value for the active call you are
disconnecting.

CTC Routine Specifications 2-73

ctcRemoveMonitor

ctcRemoveMonitor
Removes a Device From a Monitor Channel

Format in C
unsigned int ctcRemoveMonitor (ctcChanld monitorChannel,
ctcDeviceString deviceDN)
Description

The ctcRemoveMonitor routine removes monitoring for a device associated with
a monitor channel. Use this routine when you no longer want to receive event
information for the device on the monitor channel.

To stop monitoring all devices on a monitor channel and deassign the monitor
channel, use ctcDeassign.

Restriction

This routine is not supported on CTC clients running Windows 3.1/3.11. CTC
applications running on Windows 3.1/3.11 cannot assign to monitor channels.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

deviceDN
type: ctcDeviceString
access: read only

mechanism: by reference

This argument is the address of a character string that contains the DN for the
device you no longer want to monitor:

= For a telephony device or route point, this ASCII string can contain any
combination of numbers 0 through 9 and the characters * and #.

2-74 CTC Routine Specifications

ctcRemoveMonitor

= For a monitor channel, specify the device number returned in the setDN field
of the ctcChanData structure. This is returned when you call
ctcGetChannellnformation for the monitor channel. See the description of
ctcGetChannellnformation for more information.

Specify the device number exactly as it is returned in the setDN field, using the
same case for letters. The device number is an ASCII string that can contain any
combination of numbers 0 through 9, uppercase letters A through F, and the
characters * and #.

The maximum length for deviceDN is specified by the literal ctcMaxDnLen in a
CTC definitions file (see Section 1.5). Note that this maximum length includes
the null termination character (NUL).

CTC Routine Specifications 2-75

ctcRespondTolnactiveCall

ctcRespondTolnactiveCall
Respond to Inactive Call

Format in C
unsigned int ctcRespondTolnactiveCall (ctcChanld channel,
unsigned int callRefld,
unsigned int action)
Description

The ctcRespondTolnactiveCall routine allows you to respond to an outbound call
that was not completed. The call must have been made to an extension on the
same switch (or possibly on a private switch network), and either the call was
not answered, or the destination was busy.

This routine lets you respond by invoking one of the following functions:

= Camp on—if the destination is busy, you can wait until that call is cleared.
Camp On is a mechanism for queuing calls. If you invoke Camp On, the
switch notifies the destination of the presence of the queued call. When the
destination device finishes its current call, and you are first in the queue, you
are automatically connected.

= Barge In (also called Intrude)—you may “barge in” on the existing call, if this
class of service is enabled on the switch.

= Ring Back— if the destination is busy and you invoke Ring Back, the switch
will ring you back when the extension becomes free. If the extension is not
answered and you invoke Ring Back, the switch will ring you back after the
extension is next used.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

2-76 CTC Routine Specifications

ctcRespondTolnactiveCall

callRefld
type: integer (unsigned)
access: read only

mechanism: by value

This argument is a 32-bit integer that contains the call identifier value for the
current call. The call identifier value is returned by ctcGetEvent or
ctcWinGetEvent for the failed call.

action
type: integer (unsigned)
access: read only

mechanism: by value

This argument is a 32-bit integer containing a response value. This value
specifies the action required when the destination device is busy or not
answering. Table 2-13 explains the meaning and effect of each possible response
value.

Table 2-13 Response Values for ctcRespondTolnactiveCall

Signal Response Value Description

Busy ctcK_CampOn Camp On puts the call into a special waiting state.
The calling device must remain off-hook; that is, the
caller simply waits until the call gets through. When
the destination device becomes idle, the switch
automatically rings the destination device and
connects the call when it is answered.

Busy ctcK_Bargeln Barge In lets the caller break into a call in progress on
the destination device.

Busy ctcK_RingBack Ring Back When Free lets the caller hang up as soon
as Ring Back When Free is set. The caller can then
make or receive other calls. When both parties to the
original call are next free at the same time, the switch
automatically rings and connects both parties.

No answer ctcK_RingBack Ring Back When Next Used operates as for Busy but
the switch waits for an event on the destination device
to indicate that there is someone there to answer the
call.

CTC Routine Specifications 2-77

ctcRespondToRouteQuery

ctcRespondToRouteQuery
Respond to Route Query Messages from the Switch

Format in C
unsigned int ctcRespondToRouteQuery (ctcChanld channel,
unsigned int routeld,
ctcDeviceString newCalledNumber,
ctcApplString applicationData)
Description

The ctcRespondToRouteQuery routine supplies a new route for a call that was
presented to the application for routing by the routine ctcGetRouteQuery. See
the description of the ctcGetRouteQuery routine for more information.

If you do not want the application to reroute a call, specify the address of a
zero-length character string with the newCalledNumber argument.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

routeld
type: integer (unsigned)
access: read only

mechanism: by value

This 32-bit integer contains the route identifier returned by ctcGetRouteQuery
or ctcWinGetRouteQuery for the call to be routed.

2-78 CTC Routine Specifications

ctcRespondToRouteQuery

newCalledNumber

type: ctcDeviceString
access: read only
mechanism: by reference

This argument is the address of a null-terminated character string that
identifies the new route for the call.

The maximum length for newCalledNumber is specified by the literal
ctcMaxDnLen, in a CTC definitions file (see Section 1.5). Note that this
maximum length includes the null termination character (NUL).

If you do not want the application to reroute a call, specify the address of a
zero-length character string with this argument.

applicationData

type: ctcApplString
access: read only
mechanism: by value

You use this argument to associate data, for example, customer reference
information or account data, with the call being routed. The argument specifies
the address of a NUL-terminated character string.

If the call is successfully routed, the data is stored by the switch and reported on
subsequent events until the call is terminated.

Note that if data is already associated with the call, it is overwritten by the
string that you specify. If you do not want to overwrite the data, or if you do not
want to associate any data with the call, pass a zero-length string.

CTC Routine Specifications 2-79

ctcRetrieveHeld

ctcRetrieveHeld
Retrieve a Call on Hold

Formatin C

unsigned int ctcRetrieveHeld (ctcChanld channel,
unsigned int callRefld)

Description

The ctcRetrieveHeld routine retrieves a call that is on hold.

Some switches require you to cancel the consultation call before retrieving the
call on hold. With other switches, the cancel function is not required because
ctcRetrieveHeld cancels the call itself.

For example, for A to cancel a consultation call and retrieve a call on hold:

1. Acalls B, and then calls C using ctcConsultationCall, which automatically
puts B on consultation hold.

2. Depending on the switch, A can do one of the following:

= Use ctcCancelCall to cancel the call to C. This routine disconnects C and
puts A in the initiate state. A can now use ctcRetrieveHeld to retrieve the
call to B, who is on consultation hold.

= Use ctcRetrieveHeld to cancel the call to C and retrieve the call to B.

If you require your application to work with all switches that CTC supports,
always attempt to cancel the failed consultation call with the ctcCancelCall
routine. If this routine returns with ctcUnsupProc, use the ctcRetrieveHeld
routine to cancel the consultation call and return to the held call.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
channel ID) value returned by ctcAssign for the device in use.

2-80 CTC Routine Specifications

ctcRetrieveHeld

callRefld
type: integer (unsigned)
access: read only

mechanism: by value

This 32-bit integer contains the call identifier value for the held call you wish to
retrieve. This value is returned by ctcGetEvent or ctcWinGetEvent.

CTC Routine Specifications 2-81

ctcSendDTMF

ctcSendDTMF
Output DTMF Tones
Format in C
unsigned int ctcSendDTMF (ctcChanld channel,
unsigned int callRefld,
ctcDeviceString DTMFdigits)
Description

The ctcSendDTMF routine generates DTMF tones over the telephone line.
DTMF tones are usually generated by pressing the keys on a telephone keypad.
This routine enables an agent to respond to systems that require DTMF tones as
input.

You specify the tones you want to generate with the calledNumber argument.
This argument specifies the string of numbers you want to convert for output as
DTMF tones.

Restrictions
To use ctcSendDTMF, both of the following must apply:

= The channel must be assigned to a voice set (for example, a telephone) or an
agent position. This routine is not supported for channels assigned to logical
devices (call queues, route points, or monitor channels).

e There must be an active call on the line.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

2-82 CTC Routine Specifications

ctcSendDTMF

callRefld
type: integer (unsigned)
access: read only

mechanism: by value
This 32-bit integer contains the call identifier value for the current call.

The call identifier value is the latest value returned by ctcGetEvent or
ctcWinGetEvent for the call.

DTMFdigits
type: ctcDeviceString
access: read only

mechanism: by reference

This argument is the address of a character string that specifies the numbers
you want to convert for output as DTMF tones.

The string can contain any combination of the numbers 0 through 9 and the
characters * and #, up to a maximum of characters specified by the literal
ctcMaxDnLen. This literal is defined in a CTC definitions file (see Section 1.5).
Note that this maximum length includes the null termination character (NUL).

CTC Routine Specifications 2-83

ctcSetAgentStatus

ctcSetAgentStatus

Set Status for an ACD Agent

Format in C

unsigned int ctcSetAgentStatus (ctcChanld channel,

unsigned int agentMode,
ctcDeviceString agentData,
ctcDeviceString logicalAgent,
ctcDeviceString agentGroup)

Description

The ctcSetAgentStatus routine lets you set the status for an ACD agent. Using
this routine, a user can log on (with an optional password) or log off as an ACD
agent. They can also declare themselves:

« Ready to take calls

= Busy

= Completing details after a call
= Doing other work

You can also use the agentGroup argument to associate the agent with a specific
agent group, if, for example, the switch enables agents to log into more than one
agent group.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

2-84 CTC Routine Specifications

ctcSetAgentStatus

agentMode
type: integer (unsigned)
access: read only

mechanism: by value

This argument specifies the status for an ACD agent. It contains one of the
values in Table 2-14.

Table 2-14 Agent Mode Values for ctcSetAgentStatus

Value Description

ctcK_AgentReady The agent is ready to receive calls

ctcK_AgentNotReady The agent is not ready to receive calls

ctcK_AgentOtherWork The agent is involved in other work and cannot take
calls

ctcK_AgentAfterCallWork The agent is completing details of a call

ctcK_AgentLogin The agent is logging in

ctcK_AgentLogout The agent is logging out

agentData

type: ctcDeviceString

access: read only

mechanism: by reference
This argument contains optional data (such as a password).

The maximum length for agentData is specified by the literal ctcMaxDnLen in
the CTC definitions file. Note that this maximum length includes the null
termination character (NUL).

logicalAgent
type: ctcDeviceString
access: read only

mechanism: by reference

This argument contains optional data for logical agents. Use this argument to
specify the DN (for example, telephone number) for the logical agent.

The maximum length for logicalAgent is specified by the literal ctcMaxDnLen in
the CTC definitions file. Note that this maximum length includes the null
termination character (NUL).

CTC Routine Specifications 2-85

ctcSetAgentStatus

agentGroup
type: ctcDeviceString
access: read only

mechanism: by reference

This argument contains optional data. It specifies the DN for an agent group. If
your switch enables agents to log into more than one agent group, use this
argument to specify with which group the agent is associated.

The maximum length for agentGroup is specified by the literal ctcMaxDnlLen in
the CTC definitions file. Note that this maximum length includes the null
termination character (NUL).

2-86 CTC Routine Specifications

ctcSetCallForward

ctcSetCallForward
Set Call Forward for a Device

Format in C
unsigned int ctcSetCallForward (ctcChanld channel,
unsigned int forwardMode,
ctcDeviceString forwardDn)
Description

The ctcSetCallForward routine lets you set call forward for the assigned device
so that incoming calls are redirected to another device. You can use this routine
to set the following:

= All calls to be forwarded
= External calls only to be forwarded
= Internal calls only to be forwarded

You can also specify whether incoming calls are to be forwarded if the assigned
device is busy or if the call is not answered after a period of time (determined by
the switch).

Canceling Call Forward

You also use ctcSetCallForward to cancel call forward. Use the forwardMode
argument with the same value that you specified to set call forward on, but do
not specify a value for forwardDN; that is, specify the address of a zero-length
character string.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

CTC Routine Specifications 2-87

ctcSetCallForward

forwardMode
type: integer (unsigned)
access: read only

mechanism: by value

This argument sets the call forward setting for the assigned device. It contains
one of the values in Table 2-15.

Table 2-15 Call Forward Values for ctcSetCallForward

Value Calls Forwarded

ctcK_CfAll All calls

ctcK_CfExtBusy External calls when the assigned device is busy
ctcK_CfExtNoAnswer External calls when there is no answer
ctcK_CfIntBusy Internal calls when the assigned device is busy
ctcK_CfIntNoAnswer Internal calls when there is no answer
ctcK_CfNoAnswerBusy All calls when there is no answer and when the

assigned device is busy

forwardDN
type: ctcDeviceString
access: read only

mechanism: by reference

This argument is the address of a character string that contains the dialable
number of the destination device.

The maximum length for forwardDN is specified by the literal ctcMaxDnLen, in
the CTC definitions file. Note that this maximum length includes the null
termination character (NUL).

2-88 CTC Routine Specifications

ctcSetDoNotDisturb

ctcSetDoNotDisturb
Set Do-Not-Disturb for a Device

Formatin C

unsigned int ctcSetDoNotDisturb (ctcChanld channel,
unsigned int DNDMode)

Description

The ctcSetDoNotDisturb routine sets or cancels Do-Not-Disturb for the assigned
device. When Do-Not-Disturb is set on, incoming calls do not ring at the device.
Your switch-specific documentation should describe what happens to a call when
it encounters a Do-Not-Disturb feature.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

DNDMode
type: integer (unsigned)
access: read only

mechanism: by value

This 32-bit integer contains one of the values in the following table:

Value Description
ctcK_On Sets Do-Not-Disturb on for the assigned device
ctcK_Off Sets Do-Not-Disturb off for the assigned device

When Do-Not-Disturb is set on, incoming calls are not presented at the assigned
device. The default setting is off.

CTC Routine Specifications 2-89

ctcSetMessageWaiting

ctcSetMessageWaiting
Set Message Waiting for a Device

Formatin C

unsigned int ctcSetMessageWaiting (ctcChanlid channel,
unsigned int messageWaitingMode)

Description

The ctcSetMessageWaiting routine lets you set the message waiting indicator on
or off for the assigned device. The message waiting indicator is usually a lamp on
the telephone set. If there is a message waiting, the lamp is lit.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

messageWaitingMode

type: integer (unsigned)
access: read only
mechanism: by value

This 32-bit integer contains one of the values in the following table:

Value Description
ctcK_On Sets the message waiting indicator on
ctcK_Off Sets the message waiting indicator off

The indicator is often a lamp on the device.

2-90 CTC Routine Specifications

ctcSetMonitor

ctcSetMonitor
Set Monitoring for a Device

Format in C
unsigned int ctcSetMonitor (ctcChanld channel,
unsigned int monitorMode)
Description

The ctcSetMonitor routine changes the monitoring state of the assigned device.

You can use this routine with ctcGetEvent to receive useful information on the

state of calls associated with a device. Status information is returned whenever
a significant event occurs; for example, when an incoming call arrives, or when
an active call is disconnected.

Monitoring Devices

Monitoring a device can provide information on the other party or parties
involved in a phone call. It can return:

= The extension numbers for those parties on the same switch

= For an outside call, the trunk number in use on the switch or, if the switch
and telephone network can supply the information, the calling line 1D, which
identifies the device that originated the call

= The dialed number (the digits used to place the call)

Monitoring also returns a reference number for calls on the assigned device.
This call reference identifies the call, and you must use it as a parameter for
most CTC routines that process telephone calls.

Monitoring Groups or Call Queues

CTC can return information when a call enters or leaves a specific group queue,
and can tell you if the caller has disconnected or if the call has been routed to an
agent.

CTC Routine Specifications 2-91

ctcSetMonitor

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

monitorMode

type: integer (unsigned)
access: read only
mechanism: by value

This argument is a 32-bit integer that contains one of the values in the following

table:

Value Description

ctcK_On Sets monitoring on for the device
ctcK_Off Sets monitoring off for the device

2-92 CTC Routine Specifications

ctcSetRoutingEnable

ctcSetRoutingEnable
Set the Routing State for a Device

Formatin C

unsigned int ctcSetRoutingEnable (ctcChanld channel,
unsigned int routingMode)

Description

The ctcSetRoutingEnable routine enables or disables routing for the assigned
route point:

= If you enable routing, the switch passes a route request to CTC when it
receives a call for the assigned route point. You use ctcGetRouteQuery and
ctcWinGetRouteQuery to receive the route request and
ctcRespondToRouteQuery to provide a new route for the call.

= If you disable routing, the switch stops sending route requests to CTC for the
assigned route point.

To display the current routing state for a route point, use ctcGetRoutingEnable.
Refer to the description of ctcGetRoutingEnable for more information.

Enabling Call Routing

If your switch supports ctcSetRoutingEnable, you use the following sequence of
routines:

1. ctcAssign to assign a channel to the route point.

2. ctcSetRoutingEnable to explicitly enable call routing for the assigned route
point. The switch passes route requests to CTC whenever it receives a call at
the route point.

3. ctcGetRouteQuery or ctcWinGetRouteQuery to receive the route requests.
4. ctcRespondToRouteQuery to respond to the route requests.

At any point, you can check whether routing is enabled or disabled for a route
point with the ctcGetRoutingEnable routine.

For more information, refer to the descriptions of the ctcGetRoutingEnable,
ctcGetRouteQuery, ctcWinGetRouteQuery, and ctcRespondToRouteQuery
routines.

CTC Routine Specifications 2-93

ctcSetRoutingEnable

Disabling Call Routing

When you disable call routing, the switch stops sending route requests to your
application for calls made to the route point. If there is an outstanding
ctcGetRouteQuery or ctcWinGetRouteQuery request, an error is returned.

You can continue to receive information about calls made to the route point by
using ctcGetEvent. If supported by your switch, you can continue to monitor the
route point with this routine.

Using Call Routing Without ctcSetRoutingEnable

A number of switches support call routing but pass routing requests to CTC
automatically. On these switches, you cannot enable or disable routing for a
specific route point so ctcSetRoutingEnable is not supported. However, you can
continue to receive and respond to route requests by using the following
sequence of routines:

1. ctcAssign to assign a channel to the route point
2. ctcGetRouteQuery or ctcWinGetRouteQuery to receive the route request
3. ctcRespondToRouteQuery to provide a new route for the call

To check whether your switch supports ctcSetRoutingEnable, refer to

Appendix A. Note that if your switch supports ctcSetRoutingEnable, you must
use this command to explicitly enable routing before you use ctcGetRouteQuery
or ctcWinGetRouteQuery.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype and identifies the route point for which
you want to receive route requests.

Specify the channel identifier returned by ctcAssign for the route point.

2-94 CTC Routine Specifications

ctcSetRoutingEnable

routingMode

type: integer (unsigned)
access: read only
mechanism: by value

This argument is a 32-bit integer that contains one of the values in the following
table:

Value Description
ctcK_On Enables routing for the assigned route point
ctcK_Off Disables routing for the assigned route point

CTC Routine Specifications 2-95

ctcSingleStepTransfer

ctcSingleStepTransfer
Make a Call Transfer

Format in C
unsigned int ctcSingleStep Transfer (ctcChanld channel,
ctcDeviceString calledNumber,
unsigned int callRefld,
ctcApplString applicationData,
unsigned int *newCallRefld)
Description

The ctcSingleStepTransfer routine transfers a current call to a third party and
disconnects the assigned device.

ctcSingleStepTransfer enables you to complete an unscreened (or unsupervised)
transfer without first placing the current call on hold.

For example, for A to transfer to C an incoming call from B:
1. B calls A using ctcMakeCall, and A answers.

2. A uses ctcSingleStepTransfer to put the call through to C. A is automatically
disconnected and B waits for C to answer.

For screened transfer (for example, for A to wait until C answers before
transferring the call), use ctcConsultationCall and ctcTransferCall.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

2-96 CTC Routine Specifications

ctcSingleStepTransfer

calledNumber

type: ctcDeviceString
access: read only
mechanism: by value

This character string contains the number of the device to which you are
transferring the call. The ASCII string can contain any combination of numbers
0 through 9 and the characters * and #.

The maximum length for calledNumber is specified by the literal ctcMaxDnLen
in the CTC definitions file. Note that this maximum length includes the null
termination character (NUL).

callRefld
type: integer (unsigned)
access: read only

mechanism: by value

This 32-bit integer contains the call identifier value for the call you want to
transfer. Specify the latest value returned by ctcGetEvent, ctcWinGetEvent, or
an associated routine such as ctcMakeCall.

applicationData

type: ctcApplString
access: read only
mechanism: by value

This argument is the address of a NUL-terminated character string that you
want to associate with the call to be transferred. For example, customer
reference information or account data.

If the call transfer is successful, the data is stored by the switch and reported on
subsequent events until the call is terminated.

If you do not want to associate data with the call, pass a zero-length string.

newCallRefld

type: integer (unsigned)
access: write only
mechanism: by reference

This argument is the address of a 32-bit integer into which CTC writes a call
identifier value for the new transferred call.

CTC Routine Specifications 2-97

ctcSnapshot

ctcSnapshot
Query the Current State of a Device

Formatin C

unsigned int ctcSnapshot (ctcChanld channel,
ctcCallData *callData,
unsigned int *numberOfCalls)

Description

The ctcSnapshot routine returns information for up to 32 current calls at the
assigned telephony device. ctcSnapshot provides the following information:

= Call reference for each call
= State of each call
= Total number of calls at the device or in the queue

For example, if the user at a voice set places a call on hold and then makes a
consultation call, ctcSnapshot returns:

« A call reference and state for the held call
« A call reference and state for the consultation call
= The total number of calls at the voice set (2)

For queues, ctcSnapshot can return call references and states for up to 32 calls.
If there are more than 32 calls in the queue, CTC returns the first 32 call
references and states provided by the switch. The numberOfCalls argument
returns the total number of calls in the queue.

Restrictions

ctcSnapshot is supported for channels assigned to devices of type ctcK_Dn only.
For example, voice sets or queues. For more information, refer to the description
of ctcAssign.

2-98 CTC Routine Specifications

ctcSnapshot

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

callData
type: ctcCallData
access: write only

mechanism: by reference

This argument contains the address of an array of 32 fixed-format structures, of
type ctcCallData and formatted as follows:

ctcCal | Dat af
unsi gned i nt refld;
unsi gned i nt state;

The fields in this structure are all null terminated.

refld
This 32-bit field returns the reference identifier for a call.

state
This 32-bit field returns the state for a call.

For details of the call states that can be returned, refer to Table 2—4.

numberOfCalls

type: integer (unsigned)
access: write only
mechanism: by reference

This 32-bit integer returns the total number of calls at the assigned device.

CTC Routine Specifications 2-99

ctcSwapWithHeld

ctcSwapWithHeld
Swap with Call on Hold

Formatin C

unsigned int ctcSwapWithHeld (ctcChanld channel,
unsigned int heldCallRefld,
unsigned int activeCallRefld)

Description

The ctcSwapWithHeld routine swaps the current call with the call on
consultation hold.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

heldCallRefld
type: integer (unsigned)
access: read only

mechanism: by value

This 32-bit integer contains a call identifier value for the held call you wish to

swap.
activeCallRefld

type: integer (unsigned)
access: read only

mechanism: by value

This 32-bit integer contains a call identifier value for the active call you wish to
swap (with the call on hold).

2-100 CTC Routine Specifications

ctcTransferCall

ctcTransferCall
Transfer a Call

Formatin C

unsigned int ctc TransferCall (ctcChanlid channel,
unsigned int heldCallRefld,
unsigned int activeCallRefld,
unsigned int *newcCallRefld)

Description

The ctcTransferCall routine completes the transfer of a call (initiated by the
ctcConsultationCall routine) to a different extension, and disconnects the
assigned device.

For example, for A to transfer to C an incoming call from B (where A’s current
call is the call from B):

1. Bcalls A, using ctcMakeCall, and A answers.

2. Acalls C, using ctcConsultationCall, which automatically puts the call from
B on hold.

3. A invokes ctcTransferCall when connected to C. B and C are now connected
and A is disconnected.

To screen (or supervise) a transfer, A waits until speaking to C before invoking
ctcTransferCall. For unscreened (or unsupervised) transfer, A invokes
ctcTransferCall before C answers the telephone.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

CTC Routine Specifications 2-101

ctcTransferCall

heldCallRefld
type: integer (unsigned)
access: read only

mechanism: by value

This 32-bit integer contains the call identifier value for the held call to be
transferred.

The call identifier value is the latest value returned by ctcWinGetEvent for the
held call.

activeCallRefld

type: integer (unsigned)
access: read only
mechanism: by value

This 32-bit integer contains the call identifier value for the active call to which
you want to transfer the held call.

The call identifier value is the latest value returned by ctcWinGetEvent for the
active call.

newCallRefld

type: integer (unsigned)
access: write only
mechanism: by reference

This argument is the address of a 32-bit integer that receives a call identifier
value for the new transferred call.

2-102 CTC Routine Specifications

ctcWinGetEvent

ctcWinGetEvent
Get Information About Event and State Changes

Format in C
unsigned int ctcWinGetEvent (ctcChanld channel,
IpvASB *IovASB,
HWND hWnd,
ctcEventData *eventData)
Description

ctcWinGetEvent is a non-blocking routine that enables a Windows-based CTC
application to receive telephony events for the assigned device. It returns the
same information as ctcGetEvent.

CTC clients running Windows 3.1/3.11 must use ctcWinGetEvent, not
ctcGetEvent, to receive event information. ctcWinGetEvent is an asynchronous
routine that enables Windows 3.1/3.11 clients to receive event information for
the assigned device without blocking the application. Windows 3.1/3.11 clients
require a non-blocking routine because they use a Windows Socket interface to
the CTC server for API calls and not DCE Remote Procedure Call services.

Note that ctcWinGetEvent is available for Windows 3.1/3.11 clients only. For
Windows NT and Windows 95 clients, use ctcGetEvent.

How ctcWinGetEvent Returns Event Data
When an event occurs at the assigned device, CTC:

e Returns the event in the ctcEventData structure

e Postsa PM_CTC_EVENT completion message to the window specified by the
hwnd argument

Associated with the completion message is an IParam parameter that specifies
the address for the IpvASB structure. The IpvASB structure contains the routine
completion status and a read-only value, for example, a pointer to the
ctcEventData structure into which event information has been written.

The amount of information that CTC returns depends on the information
provided by the switch. This may be different for a call that is internal to the
switch and for an outside call, depending on the type of trunks connected to the
switch.

CTC Routine Specifications 2-103

ctcWinGetEvent

Calling ctcWinGetEvent

To return event information for the assigned device, you use the following
sequence of routines:

1. ctcSetMonitor to set monitoring on
2. ctcWinGetEvent

Note that you do not need to call ctcWinGetEvent after each event. You only
need to call this routine again if the completion status returned in the IpbASB
structure is a value other than ctcSuccess or ctcEventDatal ost.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

IpvASB
type: IpvASB
access: write only

mechanism: by reference

This argument contains the address of a fixed-format structure, for which you
allocate memory of type IpvASB. The structure is defined in a CTC definitions
file installed on your system.

The IpvASB structure is formatted as follows:

| pvASB{
unsi gned int dwst at us;
unsi gned int | pvDat aPoi nt er;
unsi gned int | pvChannel ;

2-104 CTC Routine Specifications

ctcWinGetEvent

The following information is returned in the IpvASB structure:
< dwsStatus

On completion of the asynchronous procedure, this field contains the routine
completion status. This is a write only value.

e IpvDataPointer

This field contains a read only value. For example, if you are monitoring
multiple channels, you can use this field to identify the ctcEventData
structure into which event information has been written.

= IpvChannel

On completion of the asynchronous procedure, this field contains the
identifier for the channel for which you want event information.

hwnd
type: HWND
access: read only

mechanism: by reference

This handle specifies the window where CTC returns the PM_CTC_EVENT
message generated by an event at the assigned device.

eventData
type: ctcEventData
access: write only

mechanism: by reference

This argument contains the address of a fixed-format structure, ctcEventData.
This is shown on the following page.

For a description of the fields in the ctcEventData structure, refer to the
description of the ctcGetEvent routine.

CTC Routine Specifications 2-105

ctcWinGetEvent

ct cEvent Dat a{

unsi gned i nt
unsi gned i nt
unsi gned i nt
unsi gned i nt
unsi gned i nt
unsi gned i nt
unsi gned i nt
unsi gned i nt
unsi gned i nt
unsi gned i nt

ctcDeviceString
unsi gned i nt
unsi gned i nt
unsi gned i nt
unsi gned i nt
ctcDevi ceString
unsi gned i nt
unsi gned i nt
unsi gned i nt
unsi gned i nt
ctcDeviceString
unsi gned i nt
unsi gned i nt
ctcAppl String
ctcDeviceStri
ctcDevi ceStri
unsi gned i nt
ctcDevi ceStri
ctcDeviceStri
ctcDevi ceStri
ctcDeviceStri
ctcDevi ceStri
unsi gned i nt
unsi gned i nt
ctcDeviceStri
unsi gned i nt
unsi gned i nt
unsi gned i nt
unsi gned i nt
ct cAccount I nfo
ctcTi neSt anp
unsi gned i nt

ng
ng

ng
ng
ng
ng
ng

ng

2-106 CTC Routine Specifications

refld;

netCal |l | d;

ol dRef | d;

ol dNet Cal | | d;

state;

event;

event Qualifier;

type;

ot her Part yType;

ot herPartyQualifier;
ot her Party;

ot her Par t yTr unk;

ot her Part yGroup;
thirdPartyType;
thirdPartyQualifier;
thirdParty;
thirdPartyTrunk;

thi rdPartyG oup;

cal | edPartyType;

cal l edPartyQualifier;
cal l edParty;

cal | edPart yTrunk;

cal | edPartyG oup;
appl i cati onDat a;

noni tor Party;

nest edMoni t or Channel ;
agent Mode;

agent | d;

agent G oup;

agent Dat a;

| ogi cal Agent;
dtnfDigits;

originati ngPartyType;
originati ngPartyQualifi
originatingParty;
origi nati ngPartyTrunk;
origi nati ngPartyG oup;
secd dRef | d;

cal | sQueued;

account | nf o;

ti meSt anp;

pri vat eDat a;

er;

ctcWinGetRouteQuery

ctcWinGetRouteQuery
Get Route Query Messages from the Switch

Format in C
unsigned int ctcWinGetRouteQuery (ctcChanld channel,
IpbvASB *IovASB,
HWND hWnd,

ctcRouteData *routeData)

Description

ctcWinGetRouteQuery is a non-blocking routine that presents a call to a
Windows-based application so that the call can be routed. If supplied by the
switch, this routine can also return information on the other parties involved in
the call and the number dialed by the caller.

CTC clients running Windows 3.1/3.11 must use ctcWinGetRouteQuery for call
routing. ctcWinGetRouteQuery is an asynchronous routine that enables
Windows 3.1/3.11 clients to receive route information for the assigned route
point without blocking the application. Windows 3.1/3.11 clients require a
non-blocking routine because they use a Windows Socket interface to the CTC
server for API calls and not DCE Remote Procedure Call services.

ctcWinGetRouteQuery returns the same information as ctcGetRouteQuery.

Note that ctcWinGetRouteQuery is available for Windows 3.1/3.11 clients only.
For Windows NT and Windows 95 clients, use ctcGetRouteQuery.

How ctcWinGetRouteQuery Returns Route Data
When a route request occurs at the assigned device, CTC:
= Returns the information in the ctcRouteData structure

e Postsa PM_CTC_ROUTE completion message to the window specified by the
hwnd argument

Associated with the completion message is an IParam parameter that specifies
the address for the IpvASB structure. The IpvASB structure contains the routine
completion status and a read only value, for example, a pointer to the
ctcRouteData structure into which route information has been written.

CTC Routine Specifications 2-107

ctcWinGetRouteQuery

How to Call ctcWinGetRouteQuery
Use the following sequence of routines:

1. ctcAssign to assign the channel to a route point acting as a device. The route
point has a DN associated with it, but there is no real, physical device.

2. ctcWinGetRouteQuery to be notified of route requests for calls to the assigned
route point.

3. ctcRespondToRouteQuery to supply a route for the call.

Note that you do not need to call ctcWinGetRouteQuery after receiving
notification of a route request. You only need to call this routine again if the
completion status returned in the IppbASB structure is a value other than
ctcSuccess or ctcEventDatal ost.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.

IpvASB
type: IpvASB
access: write only

mechanism: by reference

This argument contains the address of a fixed-format structure, for which you
allocate memory of type IpvASB. The structure is defined in a definitions file
installed on your system.

The IpvASB structure is formatted as follows:

| pvASB{
unsi gned int dwst at us;
unsi gned int | pvDat aPoi nt er;
unsi gned int | pvChannel ;

2-108 CTC Routine Specifications

ctcWinGetRouteQuery

The following information is returned in the IpvASB structure:
< dwsStatus

On completion of the asynchronous procedure, this field contains the routine
completion status. This is a write only value.

e IpvDataPointer

This field contains a read only value. For example, if you are monitoring
multiple channels, you can use this field to identify the ctcRouteData
structure into which route information has been written.

= IpvChannel

On completion of the asynchronous procedure, this field contains the
identifier for the channel for which you want route information.

hwnd
type: HWND
access: read only

mechanism: by reference

This handle specifies the window where CTC returns the PM_CTC_ROUTE
message generated by a route request at the assigned route point.

routeData
type: ctcRouteData
access: write only

mechanism: by reference

This argument contains the address of a fixed-format structure, for which you
allocate memory of type ctcRouteData. The structure is defined ina CTC
definitions file (see Section 1.5) and is formatted as shown on the following page.

CTC returns information in one or more of the ctcRouteData fields. These are
described in Table 2-16.

CTC Routine Specifications 2-109

ctcWinGetRouteQuery

ct cRout eDat a{
unsi gned i nt
unsi gned i nt
unsi gned i nt
unsi gned i nt

ctcDeviceString

unsi gned i nt
unsi gned i nt
unsi gned i nt

ctcDeviceString

unsi gned i nt
unsi gned i nt
unsi gned i nt

ctcDeviceString

unsi gned i nt
unsi gned i nt

ctcAppl String

rout el d;

refld;

spar e001;

ot her Part yType;
ot her Party;

ot her Par t yTr unk;
ot her Part yGroup;
thirdPartyType;
thirdParty;

thi rdPartyTrunk;
thirdPartyG oup;
cal | edPartyType;
cal l edParty;

cal | edPart yTrunk;
cal | edPart yG oup;
appl i cati onDat a;

ctcDeviceString ditnfDigits;
ct cTi neSt anp ti meSt anp;
unsi gned i nt privat eDat a;
b
Table 2-16 Information Returned by ctcWinGetRouteQuery
Field Contents
routeld The route identifier for the call to be routed. Use this identifier
to specify a new route for the call with ctcRespondToRouteQuery.
refld The call reference returned by ctcWinGetEvent.
spare001 Null data.
otherPartyType A value that identifies the number of the other party as a CLID,
DN, or DNIS.
otherParty The CLID, DN, or DNIS for the other party.
otherPartyTrunk A trunk line number from the switch for the other party.
otherPartyGroup A trunk group number from the switch for the other party.

thirdPartyType

thirdParty

thirdPartyTrunk
thirdPartyGroup
calledPartyType

calledParty
calledPartyTrunk

2-110 CTC Routine Specifications

A value that identifies the number of an additional party on the
call as a CLID, DN, or DNIS.

The CLID, DN, or DNIS of an additional party involved in the
call.

A trunk line number from the switch for the third party.
A trunk group number from the switch for the third party.

A value that identifies the number originally dialed as a CLID,
DN, or DNIS.

The CLID, DN, or DNIS originally dialed.
A trunk line number from the switch for the called party.

ctcWinGetRouteQuery

Table 2-16 Information Returned by ctcWinGetRouteQuery (Continued)

Field Contents

calledPartyGroup A trunk group number from the switch for the called party.

applicationData Data associated with the call to be routed.

dtmfDigits DTMEF digits collected as the call is routed.

timeStamp Time the route request was processed either by the CTC server
or by the switch (depending on the configuration of the link).

privateData A value to indicate whether CTC has received private data from
the switch.

For detailed information about the values returned in these fields, refer to the
description of ctcGetEvent. For details of the fields supported by your switch,
refer to the switch-specific appendixes.

CTC Routine Specifications 2-111

ctcWinGetRouteQuery

2-112 CTC Routine Specifications

3

Errors and Conditions Returned

Table 3—1 in this chapter lists by name the errors and conditions that can be
returned by CTC routines. It also provides a brief description of each error and
condition. Use Table 3-1 in conjunction with the ctcErrMsg routine. This routine
provides the name of the condition or error associated with a returned value. For
details of ctcErrMsg, refer to Chapter 2.

3.1 Mapping Errors to Routines

It is not possible to specify which specific errors and conditions can be returned
for each CTC routine. Different errors and conditions can be returned by
different switches for the same routine.

However, to help you determine and isolate problems, Table 3-1 also indicates
the source of the condition the CTC API, CTC server, or the switch and the type
of error returned for conditions reported by the switch.

3.2 Source of Errors

The following general guidelines apply:

= Errors from the CTC API are usually returned for programming errors. For
example, if you pass in an invalid type or argument.

= Condition values from the CTC server are usually associated with resources
or CTC management.

= Condition values from the switch are often returned when there is a problem
with the device state or the call reference. For example, when you try to
perform an operation and the device is in the wrong state for that operation,
or when you provide an invalid call reference.

Errors and Conditions Returned 3-1

3.3 Types of Errors Returned by the Switch

Where possible, for each condition or error returned by the switch, Table 3-1

3-2

specifies one of the following:

Error

Description

Operation Error

State Incompatibility Error

System Resource Error

Subscribed Resource Availability Error

Security Error
Performance Management Error

Unspecified Error

An error in the service request made to the
switch.

The service request is incompatible with the
condition of a related CSTA object.

The service request is not fulfilled because
there are insufficient system resources at the
switch.

The service request is not fulfilled because
the required switch resource is not available.

Security error on the switch.

Performance management error on the
switch.

A switch error has occurred that does not
map onto the other error types.

Errors and Conditions Returned

Table 3—1 Condition Values Returned

Error

From

Description

ctcAlreadyOn

ctcAsnlDecodeErr

ctcAsnlEncodeErr

ctcAssignLimitReached

ctcBadObjState

ctcBindFail

ctcCompFail

ctcCondError

ctcCondWaiting

ctcConfMemberLimEXx

ctcDeadlLock

ctcEventDatal ost

ctcEventIlnProgress

CtcExTrunkLimExc

CTC SERVER

CTC SERVER

CTC SERVER

CTC SERVER

SWITCH

CTC API

CTC SERVER

CTC SERVER

CTC SERVER

SWITCH

CTC SERVER

CTC SERVER

CTC SERVER

SWITCH

Monitoring is already set on for this
channel.

A bad message format record was
received from the switch.

A bad parameter was supplied in the
message to the ASN1 encoding routine.

The application has assigned the
maximum number of channels allowed
by the CTC software license.

State incompatibility error. The object is
in the incorrect state for the service. The
switch is unable to provide more specific
information.

An RPC network binding handle cannot
be created from the serverName and
networkType arguments for ctcAssign.

Insufficient virtual memory has been
detected during the communications
initialization procedure.

An internal error has occurred on the
CTC server.

An internal error has occurred on the
CTC server.

System resource error. The request
exceeded the switch’s limit for the
number of members of a conference.

An internal error has occurred on the
CTC server.

A number of events have occurred at the
same time and some event data has been
lost.

A previous ctcGetEvent or
ctcWinGetEvent request has not yet
completed.

Subscribed Resource Availability Error.
The request exceeded the limit for
external trunks as defined on the switch.

Errors and Conditions Returned 3-3

Table 3—1 Condition Values Returned (Continued)

Error

From

Description

ctcFileOpenError

ctclnitFail

ctclnsMem

ctcinternErr

ctclnvAccountCode

ctclnvAgentData

ctclnvAgentMode

ctclnvalidDest

ctclnvalidFeature

ctclnvAllocState

ctclnvApplCorrelator

ctclnvAuthCode

ctclnvCalledDevice

3-4 Errors and Conditions Returned

CTC SERVER

CTC SERVER

CTC SERVER

CTC SERVER

SWITCH

CTC API

CTC API

SWITCH

SWITCH

SWITCH

SWITCH

SWITCH

SWITCH

The CTC trace facility could not create
the specified trace file. Check that the
file specification is correct and that disk
space is available. Refer to the
CT-Connect Installation and
Administration Guide for details of the
CTC Control Program TRACE command.

Insufficient virtual memory has been
detected during the communications
initialization procedure.

There is insufficient virtual memory
available on the CTC server to complete
the requested CTC function. Ask your
system manager to increase the amount
available and restart the CTC server.

An unspecified internal error has
occurred on the CTC server. Report the
problem to Dialogic.

An invalid account code was specified.
This value is returned by CSTA Phase 11
switches only.

Operation error. The agentData
argument for ctcSetAgentStatus contains
an invalid value for example, an invalid
password.

The agentMode argument for
ctcSetAgentStatus contains an invalid
value.

Operation error. The service request
specified an invalid destination.

Operation error. The service request
specified an invalid feature.

Operation error. The service request
specified an invalid allocation condition.

The CSTA application correlator data
parameter is not valid. This error is
returned by CSTA Phase Il switches only.

An invalid authorization code was
specified. This condition value is
returned by CSTA Phase Il switches only.

Operation error. The called device is
invalid.

Table 3—1 Condition Values Returned (Continued)

Error From Description

ctclnvCallFwdMode CTC API The forwardMode argument for
ctcSetCallForward contains an invalid
value.

ctclnvCallldentifier SWITCH Operation error. The call identifier is
invalid.

ctclnvCallingDevice SWITCH Operation error. The calling device is
invalid.

ctclnvChannel CTC API The specified channel identifier is not
valid. Check that you specified the
channel identifier as returned by
ctcAssign for the device in use.

ctclnvConnldActCall SWITCH State incompatibility error. The call
identifier specified in the Active Call
parameter of the request is invalid.

ctclnvConnldentifier SWITCH Operation error. The CSTA connection
identifier is invalid.

ctclnvCrossRefld SWITCH Operation error. The service request
specified a cross reference identifier that
is not in use at this time.

ctclnvDeviceType CTC API The specified device type is invalid.

ctclnvDevldentifier SWITCH Operation error. The device identifier is
invalid.

ctclnvDN CTC API The specified DN is not recognized on the
switch. Specify a valid number.

ctcinvDNDMode CTC API The DNDMode argument for
ctcSetDoNotDisturb contains an invalid
value.

ctclnvForwardingDest SWITCH Operation error. The request cannot be
provided because the forwarding
destination device is invalid.

ctclnvLoglID CTC API The logicalldentifier argument for
ctcAssign contains an invalid string.

ctclnvMonitorMode CTC API The monitorMode argument for
ctcSetMonitor contains an invalid value.

ctclnvNetType CTC API The networkType argument for ctcAssign
contains an invalid or unsupported RPC
protocol sequence string.

ctclnvObjectType SWITCH Operation error. The service request

specified an invalid object type for the
service.

Errors and Conditions Returned 3-5

3-6

Table 3—1 Condition Values Returned (Continued)

Error

From

Description

ctclnvParam

ctclnvPrivateData

ctclnvRouteData

ctclnvServerName

ctcLibFail

ctcLinkConnectFail

ctcLinkDown

ctcLinklnUse

ctcLinkReset

ctcLinkUp

ctcMCBnoUCB

ctcMissingParam

ctcMonAlreadyOn

ctcMonCleared

Errors and Conditions Returned

CTC API

CTC API

CTC API

CTC API

CTC SERVER

CTC SERVER

CTC SERVER

CTC SERVER

CTC SERVER

CTC SERVER

CTC SERVER

CTC API

CTC API

CTC API

One of the arguments specified with a
CTC routine contains an invalid value.

The private data passed was invalid. For
example, the data may be too large. This
value is returned by CSTA switches only.

The route information specified is
invalid.

The serverName parameter for ctcAssign
contains an invalid name or address
string for the CTC server.

The CTC server was unable to load the
modules for the protocol specified in the
CTC server startup by the Control
Program SET LINK command. Report
the problem to Dialogic.

The connection over the link between the
CTC server and the switch has failed.

The link between the CTC server and the
switch is down.

There are still channels assigned over
the link between the CTC server and the
switch. Ensure that all users have
stopped accessing the CTC server before
you set the link off.

There was an error on the link between
the CTC server and the switch so the
CTC server has reset the link.

A connection has been made over the link
between the CTC server and the switch.

An internal error has occurred on the
CTC server.

A required argument was not specified.
Refer to Chapter 2 for descriptions of the
arguments required for the routine
called.

Monitoring is already set on for this
channel.

Returned for Meridian switches only.
Monitoring has stopped because the
Meridian Mail system released the
assigned voice channel.

Table 3—1 Condition Values Returned (Continued)

Error

From

Description

ctcMonitorOff

ctcMonMaxExceeded

ctcMonNotOn
ctcMutexLocked

ctcNetBusy

ctcNetOutOfServ

ctcNoActiveCall

ctcNoCallToAnswer

ctcNoCallToClear

ctcNoCallToComplete

ctcNoConnToClear

CTC API

CTC SERVER

CTC API
CTC SERVER

SWITCH

SWITCH

SWITCH

SWITCH

SWITCH

SWITCH

SWITCH

Monitoring is set off for this channel so
the call to ctcGetEvent or
ctcWinGetEvent has been returned.

The number of channels being monitored
has exceeded the maximum as defined on
the switch or by CTC.

Check with your switch administrator for
details of the maximum number of
monitors defined on your switch. Refer to
the CT-Connect Installation and
Administration Guide for details of how
to use the Control Program SET
MONITORS command to change the
maximum set by CTC. If this error is still
returned, it may indicate that you have
exceeded the number of monitors allowed
by your CTC software agreement.

Monitoring is not set on for this channel.

An internal error has occurred on the
CTC server.

System resource error. The switch or the
network is busy.

System resource error. The switch or
network is out of service.

State incompatibility error. The
requested service operates on an active
call, but there is no active call.

State incompatibility error. There is no
active call associated with the CTC call
identifier of the call to be answered.

State incompatibility error. There is no
call associated with the CTC call
identifier of the clear call request.

State incompatibility error. There is no
active call for the CTC call identifier
specified as the call to be completed.

State incompatibility error. There is no
connection associated with the CSTA
connection identifier specified as the
connection to be cleared.

Errors and Conditions Returned 3-7

Table 3—1 Condition Values Returned (Continued)

Error

From

Description

ctcNoEvent

ctcNoHeldcCall

ctcNoPrivateData

ctcNoRoute

ctcNoRouteReq

ctcNotOn
ctcNoUnlock

ctcObjectNotKnown

ctcObjMonLimEx

ctcOpGeneric

ctcOptNotSup

ctcOutstandRegLimEx

ctcOverallMonLimEx

ctcPacErr

3-8 Errors and Conditions Returned

CTC API

SWITCH

CTC API

CTC API

CTC API

CTC SERVER
CTC SERVER

SWITCH

SWITCH

SWITCH

CTC API

SWITCH

SWITCH

SWITCH

The dontWait argument for ctcGetEvent
is set to TRUE and there is no event data
at the CTC server for this channel.

State incompatibility error. The
requested service operates on a held call,
but the specified call is not on hold.

No private data is available from the
switch. This value is returned by CSTA
switches only.

There is no route data at the CTC server
for this channel.

No call was presented to the application
for routing when
ctcRespondToRouteQuery was called.
Your application must call
ctcGetRouteQuery or
ctcWinGetRouteQuery before it provides
a new route with
ctcRespondToRouteQuery.

Monitoring is not set on for this channel.

An internal error has occurred on the
CTC server.

Operation error. The parameter has a
value that is not known to the switch.

Subscribed resource availability error.
The request exceeded the switch’s limit of
monitors for the specified object.

Operation error. Either the switch is
unable to provide more information or it
has detected an undefined error.

The specified request is not supported by
the switch.

Subscribed resource availability error.
The request exceeds the switch’s limit for
outstanding requests.

System resource error. The request
exceeded the switch’s overall limit for
monitors.

Security error. The switch has detected
an error in the privilege attribute
certificate.

Table 3—1 Condition Values Returned (Continued)

Error

From

Description

ctcParseError

ctcPerfGeneric

ctcPerfLimEXx

ctcPrivateCstaErr

ctcPrivViolCalledDev

ctcPrivViolCallingDev

ctcPrivViolSpecDev

ctcRcvRegRej

ctcReadError

ctcReqglncomWithCalledDev

ctcReglncomWithCallingDev

ctcReglncomWithObj

CTC SERVER

SWITCH

SWITCH

SWITCH

SWITCH

SWITCH

SWITCH

CTC SERVER

CTC SERVER

SWITCH

SWITCH

SWITCH

The CTC server could not parse the
message from the switch. This indicates
an internal error. Report the problem to
Dialogic.

General performance management error.
The CTC server is unable to provide
more specific information.

Performance management error. A
performance limit has been exceeded.

Unspecified error. The CSTA switch has
returned a non-standard error. Report
the problem to Dialogic and your switch
manufacturer.

Operation error. The request cannot be
provided because the called device is not
authorized for the service.

Operation error. The request cannot be
provided because the calling device is not
authorized for the service.

Operation error. The request cannot be
provided because the specified device is
not authorized for the service.

The switch rejected a message or request
from the CTC server. This indicates an
internal error. Report the problem to
Dialogic.

The read data request on the link
between the CTC server and the switch
has returned an error. This could
indicate that the switch has stopped or
restarted the link, or that there may be a
problem with the link hardware.

The requested CSTA service is not
compatible with the called device. This
error is returned by CSTA Phase Il
switches only.

The requested CSTA service is not
compatible with the calling device. This
error is returned by CSTA Phase Il
switches only.

Operation error. The request is
incompatible with the object.

Errors and Conditions Returned 3-9

Table 3—1 Condition Values Returned (Continued)

Error

From

Description

ctcResAllocError

ctcResourceBusy

ctcResOutOfServ

ctcRouteDatalost

ctcRoutelnProgress

ctcRoutingOff

ctcRPCConnecFail

ctcSealErr

ctcSecGeneric

ctcSecurityViol

ctcSegqNumErr

ctcServerUnknown

ctcServerBusy

ctcServiceBusy

3-10 Errors and Conditions Returned

SERVER
SWITCH

SWITCH

CTC SERVER

CTC API

CTC API

CTC API

SWITCH

SWITCH

SWITCH

SWITCH

CTC API

CTC API

SWITCH

Resource allocation error.

System resource error. An internal
resource is temporarily busy.

System resource error. The service
requires a resource that is out of service.
This could indicate a resource problem;
check with your network administrator.

A number of calls have been presented to
the application at the same time and
some route data has been lost.

A previous ctcGetRouteQuery or
ctcWinGetRouteQuery request has not
yet completed.

The call to ctcGetRouteQuery or
ctcWinGetRouteQuery has been returned
because the specified channel is
deassigned.

An RPC error was received. Due to the
error, an RPC network connection cannot
be created and the CTC client cannot
communicate with the CTC server.

Security error. The switch has detected
an error in the seal.

General security error. The switch is
unable to provide more specific
information.

Operation error. The request violates a
security requirement.

Operation error. The switch has detected
an error in the sequence number of the
operation.

The specified system is not a CTC server.
Check that the specified name is correct
and that the CTC Server software is
installed and running on the system.

The CTC server is too busy to respond,
possibly because it is shutting down.

System resource error. The requested
service is supported by the switch but is
temporarily unavailable.

Table 3—1 Condition Values Returned (Continued)

Error

From

Description

ctcStGeneric

ctcSubsGeneric

ctcSuccess

ctcSysGeneric

ctcSwitchDisabled
ctcSwitchEnabled
ctcSwitchlnit
ctcSwitchOverlmm
ctcSwitchOverRch
ctcSwitchOverRel

ctcTimeout

ctcTimeStampErr

ctcUCBFail

ctcUnimplemented

SWITCH

SWITCH

CTC API
SWITCH

SWITCH
SWITCH
SWITCH
SWITCH
SWITCH
SWITCH
CTC SERVER

SWITCH

CTC SERVER

CTC API

State incompatibility error. The service
request was not compatible with the
condition of a related CSTA object. The
switch is unable to provide more specific
information.

Generic subscribed resource availability
error. The switch is unable to provide
more specific information.

The routine completed successfully.

General system resource availability
error. The switch is unable to provide
more specific information.

The switch is disabled.

The switch is enabled.

The switch is initializing.

Switch overload is imminent.
Switch overload has been reached.
Switch overload is relieved.

The switch did not respond to the request
from the CTC server. There may be a
problem with the link between the CTC
server and the switch or the switch may
be too busy to respond.

If there is a problem with the link, this
value may be returned each time the
CTC server checks the state of the link.
The Retry Count set with the
Configuration Program specifies the
number of times the CTC server checks
the link. For more information, refer to
the CT-Connect Installation and
Administration Guide for your CTC
server platform.

Security error. The switch has detected
an error in the time stamp of the
operation.

The UCB initialization procedure
detected insufficient virtual memory on
the CTC server.

The option is not implemented on the
switch.

Errors and Conditions Returned 3-11

Table 3—1 Condition Values Returned (Continued)

Error

From

Description

ctcUnspecCstaErr

ctcUnspecified

ctcUnsupAPIlversion

ctcUnsupProc

ctcValueOutOfRange

ctcXmitError

SWITCH

SWITCH

CTC SERVER

CTC SERVER

SWITCH

CTC SERVER

The switch has detected an error of an
unspecified type. This value is returned
by CSTA switches only.

The switch has detected an unspecified
error.

Either the version of CTC Server
software running on the CTC server is
not compatible with the version of CTC
API running on your CTC client, or you
did not pass a valid value in the
APlversion field of the ctcAssignData
structure. For more information, refer to
the description of ctcAssign in Chapter 2.

The specified procedure is not supported
for the assigned device.

Operation error. The parameter contains
a value that is not in the range defined
for the switch.

The send data request on the link
between the CTC server and the switch
has returned an error condition.

3-12 Errors and Conditions Returned

Part Il

Part Il consists of four appendixes:

Appendix A lists the CTC features that are common to all supported switch
protocols and switches.

Appendix B lists CTC API features specific to switches that support the CSTA
protocol. It also describes CSTA-specific CTC routines for applications that work
with CSTA switches only.

Appendix C describes features of the CTC API that are specific to the link with
Lucent DEFINITY Generic 3 (G3) switches. It also describes the
DEFINITY-specific CTC routine for applications that work with the Lucent
DEFINITY G3 only.

Appendix D describes features of the CTC API that are specific to the link with
Nortel Meridian switches. It also describes the Meridian-specific routines for
CTC applications that work with a Meridian switch only.

A

Features Common to All CTC
Protocol/Switch Links

Dialogic’'s CTC API is designed to provide a compatible interface for all of the
supported protocols/switches. However, because there is no standard set of
features offered by the switch manufacturers, not all of the functions
documented in Chapter 2 will be available with each type of supported
protocol/switch.

This appendix provides a summary of:
= The level of support for each CTC function by protocol/switch (see Table A-1)

= The CTC functions that are compatible with all of the supported
protocol/switches (see Section A.1)

Read this appendix in conjunction with the appendixes that follow, each of which
indicate the functions that are specific to an individual protocol or switch.
Comparing this appendix and protocol/switch-specific appendixes should
indicate the amount of work involved in modifying your application if you want
to use all of the features available at this release (and then, in the future, want
the application to work with another protocol or switch).

The information provided on CSTA represents Dialogic's implementation of the
CSTA protocol developed by the ECMA standards group. If you are using this
protocol with CTC, also consult the documentation provided with your switch to
determine which features are supported by your switch.

Features Common to All CTC Protocol/Switch Links A-1

Table A-1 indicates the level of support provided by the individual protocols and
links supported at this version of CTC.

Table A-1 Protocol/Switch-Specific Support for CTC Routines

CSTA I CSTA I DEFINITY Meridian
ctcAddMonitor Y Y Y Y
ctcAnswercCall Y Y Y Yt
ctcAssign * * * *
ctcAssociateData * Y N N
ctcCancelCall Y Y * N
ctcConferenceJoin Y Y Y Y
ctcConsultationCall * * Y *
ctcDeassign Y Y Y Y
ctcDeflectCall * * * N
ctcErrMsg Y Y Y Y
ctcGetAgentStatus Y Y * N
ctcGetCallForward * * * N
ctcGetChannellnformation * * * *
ctcGetDoNotDisturb Y Y Y N
ctcGetEvent * * * *
ctcGetMessageWaiting Y Y Y N
ctcGetMonitor Y Y Y Y
ctcGetRouteQuery * * * *
ctcGetRoutingEnable N Y N N
ctcHangupCall Y Y Y Y
ctcHoldCall Y Y Y *
ctcMakeCall * * * *

tNot supported for channels assigned to 500 or 2500 sets.
tRefer to the switch-specific appendix for more information.

Y-Supported as documented in Chapter 2.
N—Not Supported.
*—Supported as noted in the switch-specific appendixes.

A-2 Features Common to All CTC Protocol/Switch Links

Table A-1 Protocol/Switch-Specific Support for CTC Routines (Continued)

CSTA | CSTA I DEFINITY Meridian
ctcMakePredictiveCall * * * N
ctcPickupCall Y Y N N
ctcReconnectHeld Y Y Y Y
ctcRemoveMonitor Y Y Y Y
ctcRespondTolnactiveCall Y Y N N
ctcRespondToRouteQuery * * * *
ctcRetrieveHeld Y Y Y *
ctcSendDTMF N Y * N
ctcSetAgentStatus * * * *
ctcSetCallForward * * * *
ctcSetDoNotDisturb Y Y * Y
ctcSetMessageWaiting Y Y Y Y
ctcSetMonitor Y Y Y Y
ctcSetRoutingEnable N Y N N
ctcSingleStepTransfer N Y N *
ctcSnapshot Y Y * N
ctcSwapWithHeld Y Y Y N
ctcTransferCall Y Y Y *
ctcWinGetEvent * * * *

* * * *

ctcWinGetRouteQuery

Y-Supported as documented in Chapter 2.

N-Not Supported.

*—Supported as noted in the switch-specific appendixes.

Features Common to All CTC Protocol/Switch Links

A-3

A.1 Common CTC Functions

The following routines are supported by all the protocol/switches CTC currently
supports:

ctcAddMonitor
ctcAnswercCall
ctcAssign
ctcConferenceJoin
ctcConsultationCall
ctcDeassign
ctcErrMsg
ctcGetChannellnformation
ctcGetEvent
ctcGetMonitor
ctcGetRouteQuery
ctcHangupCall
ctcHoldCall
ctcMakecCall
ctcReconnectHeld
ctcRemoveMonitor
ctcRespondToRouteQuery
ctcRetrieveHeld
ctcSetAgentStatus
ctcSetCallForward
ctcSetDoNotDisturb
ctcSetMessageWaiting
ctcSetMonitor
ctcTransferCall
ctcWinGetEvent
ctcWinGetRouteQuery

Generally, if you write an application using these functions, you will probably
need to make only a few changes for it to work with more than one of the
supported protocol/switches.

However, there may be some aspects of these routines that may not be common
to all switches, for example, monitoring (see Section A.2). For more information,
refer to the following switch-specific appendixes.

Also note that a switch using the CSTA protocol may not support all of these
functions. For example, not all CSTA switches support the ctcSetCallForward
routine which lets you set conditions for forwarding calls for the assigned device.
Refer to the documentation provided with your CSTA switch for details of the
features that it supports.

A-4 Features Common to All CTC Protocol/Switch Links

A.2 Monitoring

The monitoring information returned by ctcGetEvent and ctcWinGetEvent can
include information on call states, call events, event qualifiers, call types, call
parties and party qualifiers:

Call States—the call states documented in Chapter 2 for ctcGetEvent and

ctcWinGetEvent should be common to all links. Some switches may return
more information on call states; refer to the appropriate appendix for more
information.

Call Events and Qualifiers—all switches return some information on call
events, but the level of information returned will vary depending on the
switch. The fields in the ctcEventData structure are common to all switches.
However, some switches provide more information than others on call events,
and this extra, switch-specific, information is returned in the eventQualifier
field.

Call Types—not all switches support call types. Refer to your switch-specific
appendix for information about call events and call types.

Call Parties—most switches return some information on the other party,
third party, and called party involved in an event. Some switches also provide
a qualifier, providing additional identifying information on these parties.
Refer to the appropriate switch-specific appendix for details about party
information and qualifiers.

Features Common to All CTC Protocol/Switch Links A-5

A-6 Features Common to All CTC Protocol/Switch Links

B

Features Specific to the CSTA Protocol

This appendix describes Dialogic’s implementation of the Computer Supported
Telephony Applications (CSTA) protocol, Phase | and Phase 11, as developed by
the ECMA standards group. The appendix identifies those CTC routines that
are supported by CSTA Phase | and Phase |1, and notes which routines work
differently from the descriptions in Chapter 2.

Use this appendix in conjunction with the documentation provided
with your switch to determine which features are supported by your
switch.

Features Specific to the CSTA Protocol B-1

B.1 Standard CTC Functions Supported by CSTA

Table B-1 lists the standard CTC routines supported by CSTA. If a routine is
listed as Supported as noted, its limitations are documented in this appendix.
CSTA. If aroutine is listed as Supported fully, it is supported as described in
Chapter 2.

For details of the CSTA-specific routines available with CTC, refer to

Section B.15.

Table B-1 CTC Functions Specific to CSTA

CTC Routine

Support

ctcAddMonitor
ctcAnswerCall
ctcAssign
ctcAssociateData
ctcCancelCall
ctcConferenceJoin
ctcConsultationCall
ctcDeassign
ctcDeflectCall
ctcErrMsg
ctcGetAgentStatus
ctcGetCallForward
ctcGetChannellnformation
ctcGetDoNotDisturb
ctcGetEvent
ctcGetMessageWaiting
ctcGetMonitor
ctcGetRouteQuery

Supported fully.
Supported fully.
Supported as noted in Section B.2.
Supported as noted in Section B.3.
Supported fully.
Supported fully.
Supported as noted in Section B.4.
Supported fully.
Supported as noted in Section B.5.
Supported fully.
Supported fully.
Supported as noted inSection B.6.
Supported as noted in Section B.7.
Supported fully.
Supported as noted in Section B.8.
Supported fully.
Supported fully.
Supported as noted in Section B.9.

ctcGetRoutingEnable CSTA Phase | switches: not supported.

CSTA Phase Il switches: supported fully.

ctcHangupCall Supported fully.

B-2 Features Specific to the CSTA Protocol

Table B-1 CTC Functions Specific to CSTA (Continued)

CTC Routine Support
ctcHoldcCall Supported fully.
ctcMakecCall Supported as noted in Section B.10.

ctcMakePredictiveCall
ctcPickupCall
ctcReconnectHeld
ctcRemoveMonitor
ctcRespondTolnactiveCall
ctcRespondToRouteQuery
ctcRetrieveHeld

ctcSendDTMF

ctcSetAgentStatus
ctcSetCallForward
ctcSetDoNotDisturb
ctcSetMessageWaiting
ctcSetMonitor

ctcSetRoutingEnable

ctcSingleStepTransfer

ctcSnapshot
ctcSwapWithHeld
ctcTransferCall
ctcWinGetEvent
ctcWinGetRouteQuery

Supported as noted in Section B.11.
Supported fully.
Supported fully.
Supported fully.
Supported fully.
Supported as noted in Section B.12.
Supported fully.

CSTA Phase | switches: not supported.
CSTA Phase Il switches: supported fully.

Supported as noted in Section B.13.
Supported as noted in Section B.14.
Supported fully.
Supported fully.
Supported fully.

CSTA Phase | switches: not supported.
CSTA Phase Il switches: supported fully.

CSTA Phase | switches: not supported.
CSTA Phase Il switches: supported fully.

Supported fully.
Supported fully.
Supported fully.
Supported as noted in Section B.8.
Supported as noted in Section B.9.

Features Specific to the CSTA Protocol

B-3

Sections B.2 to B.16 point out the technical distinctions to note when writing
applications that call the routines listed as Supported as noted in Table B-1. If
you write an application that uses these features, or any of the CSTA-specific
features described in Section B.15, you will have to modify it to work with other
CTC-compatible switches.

B.2 ctcAssign

This section describes operating differences and points to note when you use
ctcAssign with a CSTA switch. For a full description of this routine, refer to
Chapter 2.

B.2.1 Supported Devices
You can assign a channel to the following devices:

= \oice sets (telephones)
= Groups (ACD groups, queues)
= Route points

< Monitor channels

B.2.2 Extension to the CTC API

If you are writing an application that works with CSTA switches only, you can
use additional CSTA routines described in Section B.15. To make use of these
routines, specify the following value in the APlextensions field of the
ctcAssignData structure:

ctcK_CstaPrivate

B.2.3 Devices and Supported Routines

Table B-2 shows the routines supported for each type of device. A cross (X)
indicates that the routine is supported.

Table B-2 Routines Supported for CSTA Switches

CTC Routine Voice Set Group Route Point Monitor
Channel

ctcAddMonitor X

ctcAnswerCall

ctcAssign X X X X

ctcAssociateData X

B-4 Features Specific to the CSTA Protocol

Table B-2 Routines Supported for CSTA Switches (Continued)

CTC Routine

Voice Set Group Route Point Monitor

Channel

ctcCancelCall
ctcConferenceJoin
ctcConsultationCall
ctcDeassign
ctcDeflectCall
ctcErrMsg
ctcGetAgentStatus
ctcGetCallForward
ctcGetChannellnformation
ctcGetDoNotDisturb
ctcGetEvent
ctcGetMessageWaiting
ctcGetMonitor
ctcGetRouteQuery
ctcGetRoutingEnable
ctcHangupCall
ctcHoldCall
ctcMakecCall
ctcMakePredictiveCall
ctcPickupCall
ctcReconnectHeld
ctcRemoveMonitor
ctcRespondTolnactive
ctcRespondToRouteQuery
ctcRetrieveHeld
ctcSendDTMF
ctcSetAgentStatus

X X X X X X X X X X X X X

Features Specific to the CSTA Protocol

B-5

Table B-2 Routines Supported for CSTA Switches (Continued)

CTC Routine Voice Set Group Route Point Monitor
Channel

ctcSetCallForward
ctcSetDoNotDisturb
ctcSetMessageWaiting

X X X X

ctcSetMonitor
ctcSetRoutingEnable X
ctcSingleStepTransfer
ctcSnapshot
ctcSwapWithHeld

ctcTransferCall

X X X X X

ctcWinGetEvent
ctcWinGetRouteQuery X
CSTA-Specific Routines

ctcCstaEscape X X
ctcCstaGetPrivateData X X X
ctcCstaGetPrivateEventData X X
ctcCstaGetPrivateRouteData X
ctcCstaSetPrivateData X X X

B.2.4 Assigning to ODNs and ADNs on Ericsson MD110 Digital Telephone Sets

If you are using ApplicationLink® 3.0 with the Ericsson MD110, you can use
CTC to monitor Own Directory Numbers (ODNSs) and Additional Directory
Numbers (ADNSs) on a Digital Telephone Set (DTS).

Monitoring ADNs and ODNs is dependent on the way that the MD110
ApplicationLink software is configured:

= If the MD110 ApplicationLink software is configured so that ADN/ODN
monitoring is disabled (unchecked), you can monitor either an ODN or an
ADN on the same DTS but not both.

To assign to the ODN or ADN, pass ctcK_Dn in the deviceType field of the

B-6 Features Specific to the CSTA Protocol

ctcAssignData structure and the ODN or ADN in the deviceDn field of the
ctcAssignData structure.

= If the MD110 ApplicationLink software is configured so that ADN/ODN
monitoring is enabled (checked), you can use CTC to monitor:

- ADN

If you pass only the ADN in the deviceDn field, your application will not
be able to complete the following requests: ctcConferenceCall,

ctcTransferCall, or ctcReconnectHeld. To monitor an ADN and complete
these functions, you must assign to both the ADN and ODN on the DTS.

Pass the following in the ctcAssignData structure:
* ctcK_Dn in the deviceType field.

* The ADN and ODN in the deviceDn field, using a colon (:) to separate
the two numbers. For example, for ADN 2000 and ODN 3050 on the
same DTS, specify 2000:3050 in the deviceDn field.

— ODN

To monitor the ODN only, pass ctcK_Dn in the deviceType field, and the
ODN in the deviceDn field, of the ctcAssignData structure.

For more information about configuring the MD110 ApplicationLink software,
refer to the MD110 ApplicationLink 3.0 Application Programmer’s Guide.

B.3 ctcAssociateData

This routine is supported for:

= Switches supporting CSTA Phase I, for example, the Alcatel 4400
= Alcatel switches supporting CSTA Phase |

« Ericsson MD110 (BC9) switches supporting CSTA Phase |

The Siemens Hicom 300E does not support ctcAssociateData. However, you can
use the applicationData argument of the ctcConsultationCall and ctcDeflectCall
routines to associate data with a call. For more information, refer to the
description of these routines in Chapter 2 and CSTA-specific differences in this
appendix.

B.4 ctcConsultationCall

This section describes operating differences when you use ctcConsultationCall
with a CSTA switch. For a full description of this routine, refer to Chapter 2.

Features Specific to the CSTA Protocol B-7

B.4.1 Application Data
Support for application data is dependent on your switch:

For this type of Application Data is...

switch...

Siemens Supported fully. For details of the applicationData argument,
Hicom 300E refer to the description of ctcConsultationCall in Chapter 2.
supporting CSTA

Phase |

Other CSTA Not supported. Pass the address of a zero-length character string
Phase I switch with the applicationData argument.

CSTA Phase 11 Supported fully. For details of the applicationData argument,
switch refer to the description of ctcConsultationCall in Chapter 2.

B.5 ctcDeflectCall

This section describes operating differences when you use ctcDeflectCall with a
CSTA switch. For a full description of this routine, refer to Chapter 2.

B.5.1 Application Data
Support for application data is dependent on your switch:

For this type of Application Data is...

switch...

Siemens Supported fully. For details of the applicationData argument,
Hicom 300E refer to the description of ctcDeflectCall in Chapter 2.
supporting CSTA

Phase |

Other CSTA Not supported. Pass the address of a zero-length character string
Phase I switch with the applicationData argument.

CSTA Phase 11 Supported fully. For details of the applicationData argument,
switch refer to the description of ctcDeflectCall in Chapter 2.

B.6 ctcGetCallForward

This section describes operating differences when you use ctcGetCallForward
with a CSTA switch. For a full description of this routine, refer to Chapter 2.

B-8 Features Specific to the CSTA Protocol

B.6.1 Call-Forward Settings Returned

CTC returns the value ctcK_NoAnswerBusy with the forwardMode argument
when the following call-forward settings are set on or off:

ctcK_CfExtBusy
ctcK_CfExtNoAnswer
ctcK_CfIntBusy
ctcK_CfIntNoAnswer
ctcK_CfNoAnswerBusy

B.7 ctcGetChannellnformation

This section describes operating differences and points to note when you use
ctcGetChannellnformation with a CSTA switch. For a full description of this
routine, refer to Chapter 2.

B.7.1 Line Types

The following values can be returned in the lineType field of the ctcChanData
structure:

ctcK_LineACD
ctcK_LineDataSet
ctcK_LineMonitorChannel
ctcK_LineTrunk
ctcK_LineUnknown
ctcK_LineVoiceSet

The value ctcK_LineRoutePoint is not returned.

B.7.2 Set Types

The following values can be returned in the setType field of the ctcChanData
structure:

ctcK_SetACD
ctcK_SetACDGroup
ctcK_SetButton
ctcK_SetButtonGroup
ctcK_SetLine
ctcK_SetLineGroup
ctcK_SetOperator
ctcK_SetOperatorGroup
ctcK_SetOther
ctcK_SetSetStation
ctcK_SetStationGroup
ctcK_SetTrunk

Features Specific to the CSTA Protocol B-9

ctcK_SetTrunkGroup
ctcK_SetUnknown

B.7.3 Switch-Specific Support

If you are using CSTA-specific routines (see Section B.15), the following values
can be returned in the switchSpecificSupport field of the ctcChanData structure:

ctcM_CstaEscape
ctcM_CstaGetPrivateData
ctcM_CstaGetPrivateEventData
ctcM_CstaGetPrivateRouteData
ctcM_CstaSetPrivateData

B.8 ctcGetEvent and ctcWinGetEvent

This section describes operating differences and points to note when you use
ctcGetEvent or ctcWinGetEvent with a CSTA switch. For full descriptions of
these routines, refer to Chapter 2.

B.8.1 Fields Used in the ctcEventData Structure

Table B—3 shows how the fields in the ctcEventData structure are supported for
CSTA switches. If Table B—3 specifies that the field is Not supported, CTC
always returns null data for that field.

Table B-3 Event Information Supported by CSTA Switches

Field Support

refld See Chapter 2.
netCallld Not supported.
oldRefld See Chapter 2.
oldNetCallld Not supported.
state See Chapter 2.
event See Chapter 2, also Sections B.8.4 and B.8.7.
eventQualifier See Section B.8.5.
type Not supported.
otherPartyType See Chapter 2.
otherPartyQualifier See Section B.8.6.
otherParty See Section B.8.7.

B-10 Features Specific to the CSTA Protocol

Table B-3 Event Information Supported by CSTA Switches (Continued)

Field Support
otherPartyTrunk See Chapter 2.
otherPartyGroup Not supported.

thirdPartyType
thirdPartyQualifier
thirdParty
thirdPartyTrunk
thirdPartyGroup
calledPartyType
calledPartyQualifier
calledParty
calledPartyTrunk
calledPartyGroup

applicationData

monitorParty

nestedMonitorChannel

agentMode
agentld
agentGroup
agentData
logicalAgent
dtmfDigits

originatingPartyType

See Chapter 2.
See Section B.8.6.
See Section B.8.7.
See Chapter 2.
Not supported.
See Chapter 2.
See Section B.8.6.
See Section B.8.7.
See Chapter 2.
Not supported.

Supported by the following switches only:

= CSTA Phase Il switches

= Alcatel switches (CSTA Phase | and Phase I1)
= Ericsson MD110 (BC9)

= Siemens Hicom 300E

For these switches, see Chapter 2.

See Chapter 2.
See Chapter 2.
See Section B.8.4.
See Section B.8.4.
See Section B.8.4.
See Section B.8.4.
Not supported.

Supported by CSTA Phase Il switches only. For these
switches, see Chapter 2.

Supported by CSTA Phase Il switches only. For these
switches, see Chapter 2.

Features Specific to the CSTA Protocol B-11

Table B-3 Event Information Supported by CSTA Switches (Continued)

Field Support

originatingPartyQualifier Not supported.

originatingParty Supported by CSTA Phase Il switches only. For these
switches, see Chapter 2.

originatingPartyTrunk Supported by CSTA Phase Il switches only. For these
switches, see Chapter 2.

originatingPartyGroup Not supported.

secOldRefld See Chapter 2.

callsQueued See Chapter 2.

accountlnfo Supported by CSTA Phase Il switches only. For these
switches, see Chapter 2.

timeStamp See Section B.8.8.

privateData Only supported by CSTA switches using the CSTA API

extension. See the description of ctcCstaPrivateEventData
in Section B.15.

B.8.2 Group Monitoring

If you are monitoring a channel assigned to a group (or queue), refer to your
CSTA switch documentation for information about the states and events
returned.

B.8.3 Return Values for Transient States

If the switch is in a transient state, it reports this state to CTC. This can cause
CTC to return one of the following condition values for ctcGetEvent or
ctcWinGetEvent:

ctcEventDatal ost
ctcSwitchDisabled
ctcSwitchEnabled
ctcSwitchlnit
ctcSwitchOverlmm
ctcSwitchOverRch
ctcSwitchOverRel

If these values are returned, repost ctcGetEvent or ctcWinGetEvent.

B.8.4 Agent Events
Table B—4 shows agent information returned by CSTA Phase | switches for

B-12 Features Specific to the CSTA Protocol

agent events. Table B-5 shows agent information returned by CSTA Phase |1

switches for agent events.

Table B-4 Agent Event Information Returned by CSTA Phase | Switches

Event Field

Contents

ctcK_AgentModeChange

agentMode One of the following values:
ctcK_AgentReady
ctcK_AgentNotReady
ctcK_AgentOtherWork
ctcK_AgentAfterCallWork

agentld Identifier for the agent

agentGroup Null

agentData Null

logicalAgent Null

ctcK_AgentLoggedOn

agentMode Null

agentld Identifier for the agent

agentGroup DN for the group

agentData Agent information (for example, a password)

logicalAgent Null

ctcK_AgentLoggedOff

agentMode Null

agentld Identifier for the agent

agentGroup DN for the group

agentData Null

logicalAgent Null

Features Specific to the CSTA Protocol B-13

Table B-5 Agent Event Information Returned by CSTA Phase Il Switches

Field

Contents

ctcK_AgentModeChange

agentMode One of the following values:
ctcK_AgentBusy
ctcK_AgentReady
ctcK_AgentNotReady
ctcK_AgentAfterCallWork
agentld Identifier for the agent
agentGroup For ctcK_AgentBusy and
ctcK_AgentAfterCallWork modes, this field returns
the DN for the group. For ctcK_AgentReady and
ctcK_AgentNotReady modes, this field returns null
data.
agentData Null
logicalAgent Null
ctcK_AgentLoggedOn
agentMode Null
agentld Identifier for the agent
agentGroup DN for the group
agentData Agent information (for example, a password)
logicalAgent Null
ctcK_AgentLoggedOff
agentMode Null
agentld Identifier for the agent
agentGroup DN for the group
agentData Agent information (for example, a password)
logicalAgent Null

B-14 Features Specific to the CSTA Protocol

B.8.5 Call Event Qualifiers for CSTA

This section describes the CSTA qualifiers for call events. Call events occur
during the progress of a call and, along with call states, indicate the success or
failure of calls involving the monitored device. The qualifier provides more
information on the nature of the event.

CTC returns additional information about call events in the eventQualifier field
of the ctcEventData structure.

To determine which event has occurred, compare the value returned in the
eventQualifier field with the literals listed as ctcK_Eq... in Table B-6.

The literals define the possible qualifiers returned by CSTA and are supplied in
the definitions file installed on your system.

Table B—6 Call Event Qualifiers for CSTA

Qualifier Literal Description

ctcK_EgActiveMonitor An Active Monitor feature (Unannounced Barge In)
has occurred. This feature typically allows intrusion
by a supervisor into an agent call with the ability to
speak and listen, and without any tone to signal the
intrusion. Because the resultant call can be
considered a conference call, this qualifier can be
supplied with a conference event.

ctcK_EqAlternate The call is in the process of being exchanged. This
feature is typically found on single-line telephones
where the user is required to press the switch hook to
put one call on hold and retrieve a held call, or to
answer a waiting call.

ctcK_EqBlocked One party has disconnected from a call leaving one
other party remaining with a local connection. This
qualifier is returned for CSTA Phase 11 switches only.

ctcK_EqBusy The call encountered a busy tone or device.

ctcK_EqCallBack The Call Back feature was invoked, to complete a call
that has encountered a busy or no answer condition.
As a result, the failed call is cleared and the call
considered as queued, and the switch will
subsequently retry the call. Consequently, this
qualifier can be supplied for events relating to any
stage of the call process.

ctcK_EqCallCancelled The user has terminated a call without going on-hook.

Features Specific to the CSTA Protocol B-15

Table B—6 Call Event Qualifiers for CSTA (Continued)

Qualifier Literal

Description

ctcK_EqCallForwardAlways

ctcK_EqCallForwardBusy

ctcK_EqCallForwardNoAnswer

ctcK_EqCallForward

ctcK_EqCallNotAnswered

ctcK_EqCallPickup
ctcK_EqCampOn
ctcK_EqConsultation

ctcK_EqDestNotObtainable
ctcK_EqDistributed

ctcK_EqDoNotDisturb
ctcK_EqEnteringDistribution

ctcK_EqForcedPause

ctcK_EqlncompatibleDest
ctcK_EqglnvalidAccountCode

B-16 Features Specific to the CSTA Protocol

The call has been redirected by setting Call
Forwarding for all conditions.

The call has been redirected by setting Call
Forwarding for a busy endpoint.

The call has been redirected by setting Call
Forwarding for an endpoint that does not answer.

The call has been redirected by setting Call
Forwarding for general, unknown, or multiple
conditions.

The call was not answered because a timer has
elapsed.

The call has been redirected by means of Call Pickup.
A Camp On feature has been invoked or has matured.

A consultation call is in progress. This qualifier is
returned for CSTA Phase Il switches only.

The call could not obtain the destination.

The call was distributed by an ACD or hunt group.
This qualifier is returned for CSTA Phase Il switches
only.

The call has encountered a Do-Not-Disturb condition.

The call was delivered to a distribution mechanism
(ACD). This qualifier is returned for CSTA Phase Il
switches only.

The agent paused work. Regulations may require
agents to have a period of time between handling
successive ACD calls.

This event qualifier is supported by CSTA Phase |1
switches only. It it returned with the
ctcK_AgentModeChange event when the agent’s work
mode changes to Agent Not Ready (agentMode
ctcK_AgentNotReady).

The call encountered an incompatible destination.

The call became associated with an invalid account
code.

Table B—6 Call Event Qualifiers for CSTA (Continued)

Qualifier Literal

Description

ctcK_EqgKeyOperation

ctcK_EqLockout

ctcK_EqMaintenance

ctcK_EgqMakecCall

ctcK_EqNetworkCongestion

ctcK_EqNetworkNotObtainable
ctcK_EqgNetworkSignal

ctcK_EqNewCall
ctcK_EqNoAvailableAgents
ctcK_EqNormalClearing

ctcK_EqNumberChanged

ctcK_EqOverflow
ctcK_EqOverride

The event occurred at a bridged or twin device, where
a telephone number associated primarily with one
device is also associated with a second device.

The call encountered inter-digit timeout while dialing.

The call encountered a facility or endpoint in a
maintenance condition.

The event was in response to a make call. This
qualifier may indicate that the caller is being
prompted. It is returned for CSTA Phase Il switches
only.

The call encountered a congested network or switch.
This may indicate that the user is listening to a “No
Circuit” Special Information Tone (SIT) from a
network, accompanied by an “All circuits are busy...”
message.

The call could not reach a destination network.

A network signal (trunk supervision or call progress)
occurred. This qualifier is supported for CSTA
Phase Il switches only.

The call has not yet been redirected.
The call could not access any agent.

The call or connection cleared in a normal way. This
qualifier is supported for CSTA Phase Il switches
only.

The called number has been changed to a new
number. This qualifier is supported for CSTA Phase |1
switches only.

The call overflowed a group queue or target.

The call resulted from an encounter with the Override
feature.

Features Specific to the CSTA Protocol B-17

Table B—6 Call Event Qualifiers for CSTA (Continued)

Qualifier Literal

Description

ctcK_EqPark

ctcK_EqRecall

ctcK_EqRedirected
ctcK_EqReorderTone

ctcK_EqResourcesNotAvail

ctcK_EqSilentMonitor

ctcK_EqSingleStepConference

ctcK_EqSingleStepTransfer

ctcK_EqTimeout

ctcK_EqTransfer
ctcK_EqTrunksBusy

B-18 Features Specific to the CSTA Protocol

The Call Park feature has been set at the device,
placing or retrieving a call in a parked position.
Placing a call in a park position releases the call from
the parking device, but retains the call in the
switching function to be connected to another (or
same) device by invoking the unparking feature there.

The Recall feature has been set at the device. This
feature alerts a device that a timeout has failed to
complete, or that further user action is anticipated.

The call has been redirected.

The call encountered a reorder tone, indicating that
the request was not recognizable. This usually occurs
when a user dials an invalid number or tries to obtain
a service not enabled for that user or device. This
qualifier can also indicate that the user is listening to
a “Reorder” Special Information Tone (SIT),
accompanied by a “The call did not go through as
dialed...” message.

Indicates resources were not available.

A Silent Monitor feature has been set at the device.
When a third party (such as an ACD agent supervisor)
has joined a call, the feature ensures that the original
party cannot hear the third party. A tone may be
provided to one or both parties indicating that they
are being monitored.

A single-step conference occurred at the device. This
qualifier is supported for CSTA Phase Il switches
only.

The transfer was a single-step transfer. This qualifier
is supported for CSTA Phase Il switches only.

A trunk timer expired. This qualifier is supported for
CSTA Phase Il switches only.

A transfer is in progress or has occurred.

The call encountered Trunks Busy.

Table B—6 Call Event Qualifiers for CSTA (Continued)

Qualifier Literal Description

ctcK_EqVoiceUnitlnitiator The event resulted from action by automated
equipment (voice mail device, voice response unit,
announcement), rather than from direct action by a
user.

B.8.6 Other, Third, and Called Party Qualifiers

Additional information about a party or called number can be returned in the
otherPartyQualifier, thirdPartyQualifier, and calledPartyQualifier fields of the
ctcEventData structure. These fields can contain one of the following:

ctcK_ConfController
ctcK_ReleasingDevice
ctcK_AlertingDevice
ctcK_CallingDevice
ctcK_CalledNumber
ctcK_LastRedirection
ctcK_NewRedirection
ctcK_AnsweringDevice
ctcK_HoldingDevice
ctcK_QueueNumber
ctcK_RetrievingDevice
ctcK_TransferringDevice
ctcK_DivertingDevice
ctcK_FailedDevice
ctcK_TrunkUsed
ctcK_AddedParty

B.8.7 Party Information for Call Events
Table B-7 provides details of the party information returned for call events.

Table B-7 CSTA Party Information for Call Events

Event Field Party Information Explanation

ctcK_DestBusy

Other Busy Party
Third Null
Called Called Number

Originating Null

Features Specific to the CSTA Protocol B-19

Table B-7 CSTA Party Information for Call Events (Continued)

Event Field

Party Information

Explanation

ctcK_DestChanged

Other
Third
Called

Originating

Ringing Party
Previous Destination
Called Number

Null

The first station called.

ctcK_Destlnvalid

Other Invalid Destination
Number

Third Null

Called Called Number
Originating Null

ctcK_DestNotObtainable

Other Null

Third Null

Called Called Number
Originating Null

ctcK_DestSeized

Other Ringing Party
Third Null
Called Called Number
Originating Point at which the call Returned by CSTA Phase 11
left the switch. switches only.
ctcK _Diverted
Other New Destination
Third Null
Called Null
Originating Null

B-20 Features Specific to the CSTA Protocol

Table B-7 CSTA Party Information for Call Events (Continued)

Event Field Party Information Explanation
ctcK_Error

Other Null

Third Null

Called Null

Originating Null
ctcK_InboundcCall

Other Calling Party

Third Last Redirected If the call was forwarded, the

last station called before
redirection.
Called Called Number
Originating Point at which the call Returned by CSTA Phase 11
entered the switch. switches only.

ctcK_Offhook

Other Called Number

Third Null

Called Null

Originating Null
ctcK_OffhookPrompt

Other Null

Third Null

Called Null

Originating Null

Features Specific to the CSTA Protocol B-21

Table B-7 CSTA Party Information for Call Events (Continued)

Event Field

Party Information

Explanation

ctcK_OpAnswered

Other
Third
Called

Originating

Answering Party
Null
ACD DN

Point at which the call
left the switch.

When a call goes to a group
queue.

Returned by CSTA Phase 11
switches only.

ctcK_OpConferenced

Other

Third
Called
Originating

Conference Controller

Null
Null
Null

The controller initiates a
conference.

ctcK_OpDisconnected

Other Disconnecting Party
Third Null

Called Null

Originating Null

ctcK_OpHeld

Other Holding Party
Third Null

Called Null

Originating Null

ctcK_OpRetrieved

Other

Third
Called

Originating

Retrieving Device

Null
Null
Null

B-22 Features Specific to the CSTA Protocol

When a call on hold is picked
up.

Table B-7 CSTA Party Information for Call Events (Continued)

Event Field Party Information Explanation
ctcK_Other
Other Party information supplied
depends on the event qualifier.
Third
Called Null
Originating Null

ctcK_TpAnswered

Other

Third

Called
Originating

Party at Other End of
Call

ACD DN or Ringing
Number

Called Number

Point at which the call
entered the switch.

Returned by CSTA Phase |1
switches only.

ctcK_TpConferenced

Other
Third
Called
Originating

Null
Null
Null
Null

ctcK_TpDisconnected

Other

Third
Called
Originating

Active Party
Disconnected

Any Held Party
Null
Null

Any party on hold.

Features Specific to the CSTA Protocol B-23

B.8.8

Table B-7 CSTA Party Information for Call Events (Continued)

Event Field

Party Information

Explanation

ctcK_TpRetrieved

Other New Active Party When a call on hold is picked
up.
Third Null
Called Null
Originating Null
ctcK_TpSuspended
Other Null
Third Null
Called Null
Originating Null

ctcK_Transferred

Other

Third
Called

Originating

New Party Connected

Party Making Transfer
Null
Null

When the original party
transfers a call in progress to a
new party.

This table gives only CSTA-specific information. For other switch-specific
information, refer to the appendix for your switch (for example, Appendix C for
the DEFINITY G3). For a description of each event (such as ctcK_DestBusy), see

Table 2-5.

Timestamp

If the link is configured to return a timestamp from the CTC server, this field
contains the date and time the CTC server processed the event.

If the link is configured to return a timestamp from the switch, this field

contains:

= For CSTA Phase | switches, null data. Timestamp information is not
supported by CSTA Phase | switches.

= For CSTA Phase Il switches, the date and time the event was processed by

B-24 Features Specific to the CSTA Protocol

the switch.

For details of how to use the Configuration Program to change the configuration
of a link, refer to the CT-Connect Installation and Administration Guide for your

CTC server platform.

B.9 ctcGetRouteQuery and ctcWinGetRouteQuery

This section describes operating differences and points to note when you use
ctcGetRouteQuery or ctcWinGetRouteQuery with a CSTA switch. For full
descriptions of these routines, refer to Chapter 2.

B.9.1 Fields Used in the ctcRouteData Structure

Table B—8 shows how the fields in the ctcRouteData structure are supported for
CSTA switches. If Table B—8 specifies that the field is Not supported, CTC
always returns null data for that field.

Table B-8 Route Information Supported by CSTA Switches

Field

Support

routeld

refld

spare001
otherPartyType
otherParty
otherPartyTrunk
otherPartyGroup
thirdPartyType
thirdParty
thirdPartyTrunk
thirdPartyGroup
calledPartyType
calledParty
calledPartyTrunk
calledPartyGroup

See Chapter 2.
See Chapter 2.
Not supported.
See Chapter 2.
See Chapter 2.
See Chapter 2.
Not supported.
Not supported.
Not supported.
Not supported.
Not supported.
Not supported.
Not supported.
Not supported.
Not supported.

Features Specific to the CSTA Protocol B-25

Table B-8 Route Information Supported by CSTA Switches (Continued)

Field Support

applicationData Supported by CSTA Phase Il switches only. For these
switches, see Chapter 2.

dtmfDigits Not supported.

timeStamp See Section B.9.2.

privateData Only supported by CSTA switches using the CSTA API

extension. See the description of ctcCstaPrivateRouteData
in Section B.15.

B.9.2 Timestamp

If the link is configured to return a timestamp from the CTC server, this field
contains the date and time the CTC server processed the route request.

If the link is configured to return a timestamp from the switch, this field
contains:

= For CSTA Phase Il switches, the date and time the request was processed by
the switch.

= For CSTA Phase | switches, null data. Timestamp information is not
supported by CSTA Phase | switches.

For details of how to use the Configuration Program to change the configuration
of a link, refer to the CT-Connect Installation and Administration Guide for your
CTC server platform.

B.10 ctcMakeCall

This section describes operating differences when you use ctcMakeCall with a
CSTA switch. For a full description of this routine, refer to Chapter 2.

B.10.1 Application Data
Support for application data is dependent on your switch:

If your switch Then...
supports...
CSTA Phase | Application data is not supported. Pass the address of a

zero-length character string with the applicationData argument.

B-26 Features Specific to the CSTA Protocol

If your switch
supports...

Then...

CSTA Phase Il

Application data is supported fully. For details of the
applicationData argument, refer to the description of ctcMakeCall
in Chapter 2.

B.11 ctcMakePredictiveCall

This section describes operating differences and points to note when you use
ctcMakePredictiveCall with a CSTA switch. For a full description of this routine,

refer to Chapter 2.

B.11.1 Allocation Argument

Specify one of the following values with the allocation argument:

Value

Description

ctcK_AllocDefault
ctcK_AllocActive

ctcK_AllocDelivered

Enables the switch's default processing for the call.

Specifies that the call is successful when the called device
answers the call.

Specifies that the call is successful when the call is put through
to the device (for example, when the phone rings).

B.11.2 Application Data

Support for application data is dependent on your switch:

If your switch Then...

supports...

CSTA Phase | Application data is not supported. Pass the address of a
zero-length character string with the applicationData argument.

CSTA Phase 11 Application data is supported fully. For details of the

applicationData argument, refer to the description of
ctcMakePredictiveCall in Chapter 2.

B.11.3 Number of Rings

The numberOfRings argument is not supported by CSTA switches. The value
that you pass with the numberOfRings argument is not used by the switch.

Features Specific to the CSTA Protocol B-27

B.12 ctcRespondToRouteQuery

This section describes operating differences when you use
ctcRespondToRouteQuery with a CSTA switch. For a full description of this
routine, refer to Chapter 2.

B.12.1 Application Data
Support for application data is dependent on your switch:

If your switch Then...
supports...
CSTA Phase | Application data is not supported. Pass the address of a

zero-length character string with the applicationData argument.

CSTA Phase 11 Application data is supported fully. For details of the
applicationData argument, refer to the description of
ctcRespondToRouteQuery in Chapter 2.

B.13 ctcSetAgentStatus

This section describes operating differences and points to note when you use
ctcSetAgentStatus with a CSTA switch. For a full description of this routine,
refer to Chapter 2.

B.13.1 Logging In Agents

A CSTA password, agent ID, or group number may be required by your CSTA
switch for logging in an agent. You can pass this data with the
ctcSetAgentStatus arguments. Specify:

= ctcK_AgentLogin as the value for agentMode

= A CSTA password with the agentData argument

e A CSTA agent ID with the logicalAgent argument

e A CSTA group humber with the agentGroup argument

B.13.2 Logging Out Agents

A CSTA password, agent ID, or group number may be required by your CSTA
switch for logging out an agent. You can pass this data with the
ctcSetAgentStatus arguments. Specify:

= ctcK_AgentLogout as the value for agentMode.

= A CSTA password with the agentData argument. Passwords for logging out

B-28 Features Specific to the CSTA Protocol

agents are supported by CSTA Phase Il switches only.
< A CSTA agent ID with the logical Agent argument.
= A CSTA group humber with the agentGroup argument.

B.13.3 Agent Mode Not Supported

CSTA Phase 11 switches do not support the agentMode value
ctcK_AgentOtherWork.

B.14 ctcSetCallForward

This section describes operating differences when you use ctcSetCallForward
with a CSTA switch. For a full description of this routine, refer to Chapter 2.
B.14.1 Supported Call-Forwarding Settings

CSTA does not support the ctcK_CfNoAnswerBusy value for the forwardMode
argument.

The ctcOptNotSup condition value is returned if you specify
ctcK_CfNoAnswerBusy.

B.15 CTC Routines for CSTA Switches

This section describes CTC routines that are provided as an extension to the
standard CTC API for CSTA Phase | and Phase 11 switches.

These routines enable you to exchange private data with your CSTA switch.

Private data is information that a switch provides or requires for specific call

features that cannot be passed using standard CTC routines. The type of data

and its content is dependent on the switch, so, to use the routines effectively,

Dialogic recommends that you work closely with the switch manufacturer.
B.15.1 Requirements

To make use of the routines:

= Your switch must support CSTA Phase | or CSTA Phase |1

= When you use ctcAssign to assign a channel, you must specify the value
ctcK_CstaPrivate in the APlextensions field of the ctcAssignData structure.
Refer to the description of ctcAssign in Chapter 2 for more information.

B.15.2 Format of Private Data
Private data is passed or retrieved using the privateDataArray argument, which

Features Specific to the CSTA Protocol B-29

is required by each CSTA-specific private data routine.

The data sent or returned using the privateDataArray argument is dependent
on the type of switch you are using and which private data routine you call:

= Table B-9 describes the values supported by all CSTA Phase | and Phase |1
switches, and values that are specific to the Alcatel 4400, Ericsson MD110,
and Hicom 300E switches. Using these values, you can determine the type of
private data you exchange with the switch.

= Table B-10 shows the type of data supported by each private data routine.

B.15.3 privateDataArray Argument

This section describes the privateDataArray argument required by all CSTA
private data routines.

privateDataArray

type: ctcPrivateDataArray
access: read and write
mechanism: by reference

privateDataArray is the address of a fixed-format structure that contains the
private data. The structure is formatted as follows:

ctcPrivateDataArray {
ctcPrivateData privbData [3];
b

ctcPrivateDataArray is an array of three ctcPrivateData structures of the
format:

ctcPrivateData {
ctcPrivDat aType pri vDat aType;

uni on
ctcPri vat eDat aRaw raw,
ctcPri vat eDat aRaw r awBy Manuf act ur er;
ct cAl cDat eAndTi meSt ri ng al cDat eAndTi ne;
unsi gned int al cServi ceQpti ons;
ct cAl cAcdWai ti ngTi e al cAcdWai t i ngTi ne;
unsi gned int al cNet wor kTi neSl ot ;
ct cAl cOx her al cCt her;
ctcDeviceString hcntof t Hel dDevi ce;
unsi gned short hcnCause;
bool ean hcntal | i ngPartyl sAni ;
ct cHcmFor war dEl enent hcnfFor war dEvent Par ans;
ct cHcmAssoci at eDat a hcmAssoci at eDat a;
unsi gned int hcmilr unkNunber ;
unsi gned short hcmAut oAnswer Mode;
ctcHenft ati onType hcnfst at i onType;
unsi gned int hcntal | sQueued,;

B-30 Features Specific to the CSTA Protocol

I

ct cHcnSet For war dEI enent
unsi gned short

ct cHcFor war dl i st

ct cHcnRout eTri gger

unsi gned int

unsi gned short

ct cHcmAgent St at e

ct cEr cént er DTMVF

ct cEr cMessageDi ver si on
ct cEr cAccount Code

ct cEr cAut hCode

ct cEr cPr essPr ogKey

ct cErcCancel Cal | back
ct cEr cSet Associ at eDat a
ct cEr cFWdACDG oup

ct cEr cEvt Associ at eDat a
ct cercConnectionl d

}privDat aVal ue;

hcnfst at i onFrwr di ngPar ans;
hcnByst enfrwr di ngType;
hcnfor war dLi st ;
hcnRout eTri gger ;
hcnRej ect Cal | ;
hcnRout i ngEndCause;
hcmAgent St at e;

er cent er DTMF;

er cMessageDi ver si on;
er cAccount Code;

er cAut hCode;

er cPr essProgKey;

er cCancel Cal | back;

er cSet Associ at eDat a;
er cFWdACDGr oup;

er cEvt Associ at eDat a;
er cFr eeQueuePos;

Each ctcPrivateData structure contains two fields:

= A privDataType field which identifies the type of data passed

= A privDataValue field which contains data of the type identified by
privDataType

The following subsections describe the privDataType and privDataValue fields.

privDataType
This field identifies the type of data passed. Use:

= Table B-9 to find the switch you are using, the privDataType values that can
be passed, and a brief description of the data type.

= Table B-10 to find the type of data the switch can return for the CSTA
private data routine called (if the routine returns private data from the
switch) or the type of data you can pass with a routine (if you use the routine
to send private data to the switch).

Table B-10 lists the data type in alphabetical order, and provides a guideline
only. For more information about the type of data supported by your switch,
contact your switch manufacturer.

Features Specific to the CSTA Protocol B-31

Table B-9 Private Data Type Values

For this This value is used...
switch...

To pass this type of data...

CSTA Phase | or Phase Il

ctcK_PrivNone

ctcK_PrivRawByManufacturer

No data

Raw data and a manufacturer
identifier

CSTA Phase Il

ctcK_PrivRaw

Raw data

Alcatel 4400 supporting CSTA Phase |11

ctcK_PrivAlcDateAndTime
ctcK_PrivAlcServiceOptions
ctcK_PrivAlcAcdWaitingTime
ctcK_PrivAlcNetworkTimeSlot
ctcK_PrivAlcOther

Date and time

Service options

ACD waiting time
Network time slot

Other Alcatel private data

Ericsson MD110 (BC9)

ctcK_PrivErcAccountCode
ctcK_PrivErcAuthCode
ctcK_PrivErcCancelCallback
ctcK_PrivErcEnterDTMF

ctcK_PrivErcEvtAssociateData

ctcK_PrivErcFreeQueuePos

ctcK_PrivErcFwdACDGroup

ctcK_PrivErcKeepQueuePos

B-32 Features Specific to the CSTA Protocol

Account code

Authorization code

Request to cancel callback on a device
DTMF tones

Dialable string associated with an
external caller

Request to release the queue position
for a deflected call, without returning
the call to the queue

Request to forward an ACD group to
another destination

Request to hold the queue position for
a call that has been deflected to
another destination temporarily (for
example, to an IVR)

Table B-9 Private Data Type Values (Continued)

For this
switch...

This value is used...

To pass this type of data...

ctcK_PrivErcMessageDiversion

ctcK_PrivErcPressProgKey

ctcK_PrivErcSetAssociateData

Request to set or cancel diversion to
operator

Request to press key number on an
MD110 telephone

Request to associate a dialable string
with an external caller

Siemens Hicom 300E

ctcK_PrivHcmAgentState
ctcK_PrivHcmAssociateData

ctcK_PrivHcmAutoAnswerMode

ctcK_PrivHcmCallingPartylsAni

ctcK_PrivHcmCallsQueued

ctcK_PrivHcmCause

ctcK_PrivHcmForwardEventParams

ctcK_PrivHcmForwardList

ctcK_PrivHcmRouteTrigger

ctcK_PrivHcmRejectCall
ctcK_PrivHecmRoutingEndCause
ctcK_PrivHcmSoftHeldDevice

ctcK_PrivHcmStationFrwrdParams

ctcK_PrivHecmStationType
ctcK_PrivHecmSystemFrwrdingType

ctcK_PrivHecmTrunkNumber

Current work mode for an agent
Application data

Request to enable or disable the
AutoAnswer feature at the
originating device

Value that identifies the calling party
as ANI

Number of calls queued

Additional qualifying data for an
event

Notification that the call forwarding
setting has changed

Additional information about the call
forwarding setting

Request trigger of all configured
Route Control Groups (RCGS)

Request to reject a route call request
Reason for a call route to end
Number for the device placed on hold

Additional parameters for the call
forwarding setting at a station

Type of station
Call forwarding setting on the switch

Trunk number

Features Specific to the CSTA Protocol B-33

Table B-10 Data Types Supported by Private Data Routines

privDataType Escape GetPrivateData GetPrivate GetPrivate SetPrivateData
Value EventData RouteData

ctcK_PrivAlcAcdWaitingTime

ctcK_PrivAlcDateAndTime
X X

ctcK_PrivAlcNetworkTimeSlot

ctcK_PrivAlcOther
X X X X X

ctcK_PrivAlcServiceOptions

X X

ctcK_PrivErcAccountCode

X

ctcK_PrivErcAuthCode
X

ctcK_PrivErcCancelCallback

X

ctcK_PrivErcEnterDTMF
X

ctcK_PrivErcEvtAssociateData

ctcK_PrivErcFreeQueuePos

X

ctcK_PrivErcFwdACDGroup
X

ctcK_PrivErcKeepQueuePos

ctcK_PrivErcMessageDiversion

X

B-34 Features Specific to the CSTA Protocol

Table B-10 Data Types Supported by Private Data Routines (Continued)

privDataType Escape GetPrivateData GetPrivate GetPrivate SetPrivateData
Value EventData RouteData

ctcK_PrivErcPressProgKey
X

ctcK_PrivErcSetAssociateData

X

ctcK_PrivHcmAgentState

X
ctcK_PrivHcmAssociateData
X X X
ctcK_PrivHcmAutoAnswerMode
X
ctcK_PrivHcmCallingPartylsAni
X X
ctcK_PrivHcmCallsQueued
X
ctcK_PrivHcmCause
X X
ctcK_PrivHcmForwardEventParams
X X
ctcK_PrivHcmForwardList
X
ctcK_PrivHcmRouteTrigger
X
ctcK_PrivHcmRejectCall
X
ctcK_PrivHcmRoutingEndCause
X
ctcK_PrivHcmSoftHeldDevice
X

Features Specific to the CSTA Protocol B-35

Table B-10 Data Types Supported by Private Data Routines (Continued)

privDataType Escape GetPrivateData GetPrivate GetPrivate SetPrivateData
Value EventData RouteData

ctcK_PrivHcmStationFrwrdParams

X
ctcK_PrivHcmStationType
X
ctcK_PrivHcmSystemFrwrdingType
X
ctcK_PrivHcmTrunkNumber
X
ctcK_PrivNone
X X X X X
ctcK_PrivRawByManufacturer
X X X X X
ctcK_PrivRaw
X X X X X

privDataValue

This field contains data of the type defined by privDataType. It contains one of
the following union elements:

* raw

This element identifies the data as raw data and is supported for all switches
compatible with CSTA Phase Il. It contains the address of a fixed-format
structure that is formatted as follows:

ctcPrivat eDat aRaw {
ctcManufacturerString manufacturer [ctcMaxManufacturerlLen];
unsi gned i nt dat aLen;
unsi gned char data [ctcMaxPrivat eDat aLen];

s

B-36 Features Specific to the CSTA Protocol

The following table describes the fields in the ctcPrivateDataRaw structure:

Field Description

manufacturer This field is not used when exchanging raw data with the switch.
If you are passing data to the switch, specify a zero-length
character string.

datalen This 32-bit field identifies the number of bytes of data in the
data field.

data This field contains an array of data. This data must be ASN.1
encoded.

rawByManufacturer

This element identifies the data as raw data and includes details of the
switch manufacturer. It is supported for all switches compatible with CSTA
Phase | and Phase 11, and contains the address of the following fixed-format
structure:

ctcPrivat eDat aRaw {
ctcManufacturerString manufacturer [ctcMaxManufacturerlLen];
unsi gned i nt dat aLen;
unsi gned char data [ctcMaxPrivat eDat aLen];

The following table describes the fields in the ctcPrivateDataRaw structure:

Field Description

manufacturer This character string contains an identifier for the switch
manufacturer passing the data. For example,
1.3.12.1276.12.

If you call ctcEscape or ctcSetPrivateData, make sure that
you pass the string in the correct format. See your switch
manufacturer for details.

datalen This 32-bit field identifies the number of bytes of data in
the data field.

data This field contains an array of data. This data must be
ASN.1 encoded.

alcDateAndTime

This character string contains the date and time to be set on the switch. It is
supported for Alcatel 4400 switches only.

Features Specific to the CSTA Protocol B-37

= alcServiceOptions

This 32-bit integer sets one or more service options on the switch. It is
supported for Alcatel 4400 switches only, and contains one or more of the
following bitmasks:

ctcM_AlcCallProgressTonelnhibition
ctcM_AlcHoldTonelnhibition
ctcM_AlcPriorityTransfer

For more information about these options, contact Alcatel.
= alcAcdWaitingTime

This element contains the waiting time for calls queued on the switch. It is
supported for Alcatel 4400 switches only and is the address of the following
fixed-format structure:

ct cAl cAcdWai ti ngTi me {
unsi gned i nt wai ti ngTi ne;
unsi gned i nt saturation;

3
The following table describes the fields in this structure:

Field Description

waitingTime This 32-bit field contains the waiting time, in seconds, for calls
queued on the Alcatel switch.

saturation A non-zero value in this 32-bit field indicates that the Alcatel queue
is at its maximum call load.

For more information about the data in these fields, contact Alcatel.
= alcNetworkTimeSlot

This 32-bit integer contains the time slot on which the associated call arrived.
= alcOther

This element contains other, undefined private data for an Alcatel 4400
switch. It is the address of the following fixed-format structure:

ctcAl cO her{

unsi gned char identifier [2];
unsi gned int dat aLen;
unsi gned char data [44];

B-38 Features Specific to the CSTA Protocol

The following table describes the fields in the ctcAlcOther structure:

Field Description

identifier This is an array of 2 bytes of data. The type of data is dependent on
the type of information you want to exchange with the Alcatel 4400
switch. For more information, contact Alcatel.

datalen This 32-bit field specifies, in bytes, the length of data passed.

data This is an array of 44 bytes of data. The type of data is dependent on
the type of information you want to exchange with the Alcatel 4400
switch. For more information, contact Alcatel.

hcmSoftHeldDevice

This null-terminated character string contains the number for the device
placed on hold. It is supported for Siemens Hicom 300E switches only. The
maximum length for ctcDeviceString is specified by the literal ctcMaxDnlLen
defined in a CTC definitions file (see Section 1.5).

hcmCause

This unsigned 16-bit integer provides additional information for events. It is
supported for Siemens Hicom 300E switches only, and can contain one of the
following values:

ctcK_HcmCauseCSTASoftHold
ctcK_HcmCauseCSTAHardHold
ctcK_HcmCauseCSTALineHold
ctcK_HcmCauseBackgroundHold
ctcK_HcmCauseExclusiveHold
ctcK_HcmCauseCSTASingleStepTransfer

hcmCallingPartylsAni

This unsigned character specifies whether the calling party is an ANI
(Automatic Number Identification) number. It is supported for Siemens
Hicom 300E switches only.

hcmForwardEventParams

This element contains details of the new call forwarding setting for a device,
when the setting has changed. It is supported for Siemens Hicom 300E

Features Specific to the CSTA Protocol B-39

switches only, and is defined in the following fixed-format structure:

ct cHentor war dEl enent {
ct cHenFor war di ngType hcenFwdType;

unsi gned short stati onFwdType;
unsi gned short syst enFwdType;
ctcDevi ceString f or war dDN;

H
The fields in this structure are:
- hcmFwdType

This field identifies which of the stationFwdType and systemFwdType
fields contain data. It contains one of the following values:

* ctcK_HcmFwdStation to indicate that data is passed in the
stationFwdType field.

* ctcK_HcmFwdSystem to indicate that the hcmForwardType field
contains a systemFwdType value.

- stationFwdType
This unsigned short can contain one of the following values:

ctcK_HcmStnFwdTypelmmediateOn
ctcK_HcmStnFwdTypelmmediatelntOn
ctcK_HcmStnFwdTypelmmediateExtOn
ctcK_HcmStnFwdTypeNoAnsOn
ctcK_HcmStnFwdTypeBusyOn

- systemFwdType
This unsigned short can contain one of the following values:

ctcK_HcmSysFwdTypelmmediateOn
ctcK_HcmSysFwdTypelmmediatelntOn
ctcK_HcmSysFwdTypelmmediateExtOn
ctcK_HcmSysFwdTypeNoAnswerOn
ctcK_HcmSysFwdTypeNoAnswerIntOn
ctcK_HcmSysFwdTypeNoAnswerExtOn
ctcK_HcmSysFwdTypeBusyOn
ctcK_HcmSysFwdTypeBusyIntOn
ctcK_HcmSysFwdTypeBusyExtOn
ctcK_HcmSysFwdTypeDoNotDisturbOn
ctcK_HcmSysFwdTypeDoNotDisturbIntOn
ctcK_HcmSysFwdTypeDoNotDisturbExtOn

B-40 Features Specific to the CSTA Protocol

- forwardDN

This character string contains the number for the device. The maximum
length for ctcDeviceString is specified by the literal ctcMaxDnLen defined
in a CTC definitions file (see Section 1.5).

hcmAssociateData

This element contains data associated with a call, such as customer reference
or customer account information. It is supported for the Siemens Hicom 300E
only and is defined in the following fixed-format structure:

ct cHcmAssoci at eDat af
unsi gned short datalen;
unsi gned char data [32];

H
The fields in this structure are:

Field Description
datalen This 16-bit field specifies, in bytes, the length of data passed.
data This is an array of 32 bytes of data. The type of data is

dependent on the type of information you want to exchange
with the Siemens Hicom 300E switch. For more information,
contact Siemens.

hcmTrunkNumber
This element is a 32-bit integer that contains a trunk number.
hcmAutoAnswerMode

This element is a 16-bit integer that specifies the setting for the AutoAnswer
feature at the originating device. Use one of the following values:

Value Description

ctcK_HcmAutoAnswerAttempt AutoAnswer will be attempted.

ctcK_HcmAutoAnswerDisable AutoAnswer is disabled.

hcmStationType

This element identifies the station type. It is supported for the Siemens

Features Specific to the CSTA Protocol B-41

Hicom 300E only and is defined in the following fixed-format structure:

ctcHenft at i onType{
ctcHentt at i onCat egory hcntt at i onCat egory;
uni on {
ct cHcmAnal ogTypes anal ogSt ati on;
ctcHenDi gital Stati onType digital Station;
ct cHenx her Equi pnent Types ot her Equi pnent ;
} hcenftati onCt gy;
3
The fields in this structure are:
- hcmStationCategory

This field identifies the type of data passed in the hcmStationCtgy union.
It contains one of the following values:

Value Description
ctcK_HcmAnalogStation Identifies the category of station as analog.
ctcK_HcmDigitalStation Identifies the category of station as digital.

ctcK_HcmOtherEquipment Identifies the category of station as another type of
equipment.

- hcmStationCtgy
This union contains one of the following elements:
* analogStation

This element identifies the type of analog station. It contains one of the
following values:

ctcK_HcmAnIgGeneric
ctcK_HcmAnNIgSet2500

* digitalStation

This element identifies the type of digital station and is defined as the
following fixed-format structure:
ctcHenDi gital StationType{

ctcHenDi gital Types digital Type;

unsi gned char digital Attributes;

b

The fields of the ctcHcmDigitalStationType structure are described in

B-42 Features Specific to the CSTA Protocol

the following table:

Field Description

digitalType This field identifies the type of digital station. It contains
one of the following values:

ctcK_HcmDgtlGeneric
ctcK_HcmDagtlSingleLine
ctcK_HcmDgtlKeyset
ctcK_HemDgtlrp120
ctcK_HcmDgtlrp240
ctcK_HemDgtlrp400
ctcK_HcmDgtlrp150
ctcK_HcmDgtlrp200
ctcK_HemDgtlrp300
ctcK_HemDgtlrp600
ctcK_HcmDgtlrp4327
ctcK_HcmDgtlset500
ctcK_HcmDgtIni1200
ctcK_HcmDgtloptie3
ctcK_HcmbDagtloptie8
ctcK_HcmDagtloptieS
ctcK_HcmDgtloptiel
ctcK_HcmbDagtloptielS
ctcK_HcmbDagtlset211
ctcK_HcmDgtlset260
ctcK_HcmDgtlset400
ctcK_HcmDgtlset600
ctcK_HcmDgtlset700

digitalAttributes This field identifies the features on the digital station. It
contains one or more of the following bitmasks:

ctcM_HcmDgtlAttrDisplay
ctcM_HcmDgtlAttrSpeaker
ctctM_HcmDgtlAttrData
ctcM_HcmDgtlAttrKeypadExp
ctcM_HcmDgtlAttrISDN
ctcM_HcmDgtlAttrTermAdptr

* otherEquipment

This element identifies the type of station if it is not an analog or
digital station. It contains one of the following values:

ctcK_HcmOthrEquipGeneric
ctcK_HcmOthrEquipFax
ctcK_HcmOthrEquipOffPremise
ctcK_HcmOthrEquipExtVoiceMail

Features Specific to the CSTA Protocol B-43

ctcK_HcmOthrEquipFictitious
ctcK_HcmOthrEquipPhantom
ctcK_HcmOthrEquipDataCommModule

e hcmCallsQueued

This element is a 32-bit integer that contains the number of calls queued. It
is supported for Siemens Hicom 300E switches only.

< hcmStationFrwrdingParams

This element contains details of the call forwarding setting for the station. It
is supported for Siemens Hicom 300E switches only, and is defined in the
following fixed-format structure:

ct cHenfSet For war dEl enent {
unsi gned short set abl eFwdType;
ctcDevi ceString f or war dDN

s
The fields in this structure are:
- setableFwdType

This 16-bit field identifies the type of call forwarding set. It contains one of
the following values:

ctcK_HcmStnFwdTypelmmedIntOn
ctcK_HcmStnFwdTypelmmedIntOff
ctcK_HcmStnFwdTypelmmedExtOn
ctcK_HcmStnFwdTypelmmedExtOff
ctcK_HcmStnFwdTypeBusyNoANnsOnN
ctcK_HcmStnFwdTypeBusyNoAnsOff

— forwardDN

This null-terminated character string contains the number for the device.
The maximum length for ctcDeviceString is specified by the literal
ctcMaxDnLen defined in a CTC definitions file (see Section 1.5).

e hcmSystemFrwrdingType

This element is a 16-bit integer that identifies the call forwarding setting
defined on the switch. It is supported for Siemens Hicom 300E switches only,
and contains one of the following values:

ctcK_HcmPreconfSysFwdOn
ctcK_HcmPreconfSysFwdOff

B-44 Features Specific to the CSTA Protocol

hcmForwardList

This element provides information about the call forwarding setting for a
device that is not returned by ctcGetCallForward. It is supported for Siemens
Hicom 300E switches only and is defined as the following fixed-format
structure:

ct cHenfor war dLi st {

unsi gned short count;
ct cHcnFor war dEl enent forwards [10];

b
The structure contains the following fields:
- count

This field specifies the number of ctcHcmForwardElement structures that
contain data and are passed as part of the ctcHcmForwardList structure.
The count value can be any number in the range 0 to 10.

- forwards

This field contains details of the call forwarding setting. It is defined as
the following fixed-format structure:

ct cHcnFor war dEl enent {
ct cHenFor war di ngType hcnFwdType;

unsi gned short stati onFwdType;
unsi gned short syst enFwdType;
ctcDevi ceString f or war dDN;

}s
The fields in this structure are:
* hcmFwdType

This field identifies which of the stationFwdType and systemFwdType
fields contain data. It contains one of the following values:

Value Description

ctcK_HcmFwdStation Indicates that data is passed in the
stationFwdType field.

ctcK_HcmFwdSystem Indicates that data is passed in the
systemFwdType field.

Features Specific to the CSTA Protocol B-45

* stationFwdType
This unsigned short can contain one of the following values:

ctcK_HcmStnFwdTypelmmediateOn
ctcK_HcmStnFwdTypelmmediatelntOn
ctcK_HcmStnFwdTypelmmediateExtOn
ctcK_HcmStnFwdTypeNoAnsOn
ctcK_HcmStnFwdTypeBusyOn

* systemFwdType
This unsigned short can contain one of the following values:

ctcK_HcmSysFwdTypelmmediateOn
ctcK_HcmSysFwdTypelmmediatelntOn
ctcK_HcmSysFwdTypelmmediateExtOn
ctcK_HcmSysFwdTypeNoAnswerOn
ctcK_HcmSysFwdTypeNoAnswerIntOn
ctcK_HcmSysFwdTypeNoAnswerExtOn
ctcK_HcmSysFwdTypeBusyOn
ctcK_HcmSysFwdTypeBusyIntOn
ctcK_HcmSysFwdTypeBusyExtOn
ctcK_HcmSysFwdTypeDoNotDisturbOn
ctcK_HcmSysFwdTypeDoNotDisturbIntOn
ctcK_HcmSysFwdTypeDoNotDisturbExtOn

* forwardDN

This character string contains the number for the device. The
maximum length for ctcDeviceString is specified by the literal
ctcMaxDnLen defined in a CTC definitions file (see Section 1.5).

< hcmRouteTrigger

This element specifies the setting for triggering all Route Control Groups
(RCGs) configured on the switch. It is supported for Siemens Hicom 300E
switches only and is defined as the following fixed-format structure:

ct cHcnRout eTri gger {
bool ean trigger Obj ect Speci fi ed;
bool ean triggerAction;
ctcDeviceString triggerQject;

I

B-46 Features Specific to the CSTA Protocol

The structure contains the following fields:

triggerObjectSpecified

This field specifies whether the trigger object is identified. It contains one
of the following values:

ctcK_HcmTriggerObjectSpecified
ctcK_HcmTriggerObjectNotSpecified

triggerAction

This field specifies the setting for triggering RCGs. It contains one of the
following values:

ctcK_On
ctcK_Off

triggerObject

This character string contains the number for the device. The maximum
length for ctcDeviceString is specified by the literal ctcMaxDnLen defined
in a CTC definitions file (see Section 1.5).

hcmRejectCall

This element is a 32-bit integer that specifies the routing reference identifier
when the request to route a call is rejected. It is supported for Siemens Hicom
300E switches only.

hcmRoutingEndCause

This element specifies the reason for a call route to end. It is supported for
Siemens Hicom 300E switches only and contains one of the following values:

Value Description

ctcK_HcmRtEndCauseRtngTmrOrDIyRngbckTmrExprd Routing Timer or Delay Ringback

Timer expired

ctcK_HcmRtEndCauseCallerAbandonedCall Caller hung up the call
ctcK_HcmRtEndCauseCallSuccessfullyRouted Call successfully routed
ctcK_HcmRtEndCauseRdAbrtdDTRtSIctRsrcPrblm Routing aborted due to route select

resource problem

hcmAgentState

This element provides additional information about the work mode for an

Features Specific to the CSTA Protocol B-47

agent that is not returned by ctcGetAgentStatus. It is supported for Siemens
Hicom 300E switches only and is defined as the following fixed-format
structure:

ct cHcmAgent St at e
unsi gned short agent St at e;
unsi gned short agent | DLen;
unsi gned char agent | D [32];
ctcDeviceString agent G oup;

b
The structure contains the following fields:

— agentState

This field specifies the work mode for the agent. It contains one of the
following values:

ctcK_HcmAgentStateNotReady
ctcK_HcmAgentStateNull
ctcK_HcmAgentStateReady
ctcK_HcmAgentStateWorkNotReady
ctcK_HcmAgentStateWorkReady

— agentiDLen

This field specifies the length of the agent identifier passed in the agentID
field.

- agentiD
This character string contains the identifier for the agent.
- agentGroup

This character string contains the number for the agent group. The
maximum length for ctcDeviceString is specified by the literal
ctcMaxDnLen defined in a CTC definitions file (see Section 1.5).

e ercEnterDTMF

This element contains DTMF tones so that, for an active call, an application
can respond to systems that require DTMF tones as input. It is supported for
Ericsson MD110 (BC9) switches only and is defined in the following
fixed-format structure:

ct cEr cEnt er DTMH{

char DTMFdi gits [12];
ct cErcConnectionld connecti on;

B-48 Features Specific to the CSTA Protocol

The structure contains the following fields:
- DTMFdigits

This character string contains the DTMF tones to send.
— connection

This field contains details of the connection. It is defined as the following
fixed-format structure:
ct cEr cConnect i onl d{

char deviceld [12];
unsi gned int cal | Refl d;

b
The structure contains the following fields:
* deviceld
This character string contains the identifier for the device.
* callRefld

This 32-bit field contains the reference identifier for the call.

ercMessageDiversion

This element sets or cancels diversion to an operator. It is supported for
Ericsson MD110 (BC9) switches only and is defined in the following
fixed-format structure:

ct cErcMessageDi ver si on{

bool ean ti meOr Dat eSpeci fi ed;
char deviceld [12];

bool ean node;
ctcErcDiversionType diversionType;

char ASNLTi meOrDate [5];

3
The structure contains the following fields:
— timeOrDateSpecified

This field contains one of the following values:

This value... Specifies that...

ctcK_ErcTimeOrDateSpecified A time or date is included in the
ASN1TimeOrDate field.

Features Specific to the CSTA Protocol B-49

This value... Specifies that...

ctcK_ErcTimeOrDateNotSpecified A time or date is not included in the
ASN1TimeOrDate field.

— deviceld
This character string contains the identifier for the device.
- mode

This field specifies whether diversion is enabled or disabled. It contains
one of the following values:

ctcK_On
ctcK_Off

— diversionType
This field contains one of the following values:

ctcK_ErcDivTypeMsgDiversion0
ctcK_ErcDivTypeMsgDiversionl
ctcK_ErcDivTypeMsgDiversion2
ctcK_ErcDivTypeMsgDiversion3
ctcK_ErcDivTypeMsgDiversion4
ctcK_ErcDivTypeMsgDiversion5
ctcK_ErcDivTypeMsgDiversion6
ctcK_ErcDivTypeMsgDiversion7
ctcK_ErcDivTypeMsgDiversion8
ctcK_ErcDivTypeMsgDiversion9

— ASNI1TimeOrDate
If supplied, this field contains time or date information entered on the
telephone keypad.
= ercAccountCode

This element contains a customer account code associated with either an
active call or a new call. If a call is active, another line appearance on the set
is used for the account code. If the device is idle, a line appearance is selected,
the account code dialed, and the line remains ready for either manual dial or
a ctcMakeCall request.

This element is supported for Ericsson MD110 (BC9) switches only and is

B-50 Features Specific to the CSTA Protocol

defined in the following fixed-format structure:
ct cEr cAccount Code{
ct cEr cAccount CodeChoi ce choi ce;

char account Code[11] ;
ct cErcConnectionld connection;

b
The ctcErcAccountCode structure contains the following fields:
- choice

This field contains one of the following values:

This value... Specifies that...
ctcK_ErcConnectionldChosen The account code is associated with an active call.
ctcK_ErcDeviceldChosen The account code is not associated with an active
call.
— accountCode

This character string contains the account code.
— connection

This field contains details of the connection. It is defined as the following
fixed-format structure:
ct cEr cConnecti onl d{

char deviceld [12];
unsi gned int cal | Refl d;

The structure contains the following fields:
* deviceld

This character string contains the identifier for the device.
* callRefld

This 32-bit field contains the reference identifier for the call.

e ercAuthCode

This element contains a customer authorization code entered at a device. It is
supported for Ericsson MD110 (BC9) switches only and is defined in the

Features Specific to the CSTA Protocol B-51

following fixed-format structure:
ct cEr cAut hCode{

char devi cel d[12] ;
char aut hCode[11] ;

b
The structure contains the following fields:
- deviceld
This character string contains the identifier for the device.
— authCode

This character string contains the authorization code.

= ercPressProgKey

This element contains the number for a programmable key on an MD110
telephone to emulate the user pressing the key. Digits, the transfer key,
conference key, and clear key are not supported. Note also that the key
numbering on different types of digital telephone sets on the MD110 are not
the same.

This element is supported for Ericsson MD110 (BC9) switches only, and is
defined in the following fixed-format structure:
ct cEr cPr essPr ogKey{

char devi cel d[12] ;
char keyNumber [4] ;

b

The structure contains the following fields:

— deviceld
This character string contains the identifier for the device.

- keyNumber
This character string contains the number of the key on the Digital
Telephone Set (DTS) as defined on the MD110.

= ercCancelCallback

This element is used to pass a request to cancel the previously set callback
feature on a device. If the number for the called party is passed, only callback
for that party is cancelled. If no number is included, all callback requests at

B-52 Features Specific to the CSTA Protocol

the device are cancelled.

The element is supported for Ericsson MD110 (BC9) switches only and is
defined in the following fixed-format structure:

ct cEr cPr essProgKey{

bool ean cal | backToCancel Speci fi ed
char devi cel d[12] ;
char cal | backt oCancel [12] ;

3
The structure contains the following fields:
- callbackToCancelSpecified

This field contains one of the following values:

This value... Specifies that...

ctcK_ErcCallbackToCancelSpecified Callback to a specific called party is
cancelled. The party is identified by the
callbackToCancel field.

ctcK_ErcCallbackToCancelNotSpecified All callback settings on the device are
cancelled.

— deviceld

This character string contains the identifier for the device at which
callback is invoked.

- callbacktoCancel
If supplied, this character string contains the number for the called party
for which callback will be cancelled.

ercSetAssociateData

This element is used to pass a dialable string with an external caller. It is
supported for Ericsson MD110 (BC9) switches only and is defined in the
following fixed-format structure:

ct cErcSet Associ at eDat af

ct cErcConnectionld connection
char associ at eDat a[21] ;

Features Specific to the CSTA Protocol B-53

The structure contains the following fields:
— connection

This field contains details of the connection. It is defined as the following
fixed-format structure:
ct cEr cConnecti onl d{

char deviceld [12];
unsi gned int cal | Refl d;

b
The structure contains the following fields:
* deviceld
This character string contains the identifier for the device.
* callRefld

This 32-bit field contains the reference identifier for the call.

— associateData

This character string contains the data associated with the caller. The
only valid characters in this string are 0 to 9 and A to F.

e ercFwdACDGrp

This element is used to request that an ACD group is forwarded to another
destination or to cancel a forward ACD group request. It is supported for
Ericsson MD110 (BC9) switches only and is defined in the following
fixed-format structure:

ct cEr cFWdACDG p{
char devi cel d[12] ;
bool ean node;
char acdDevi ce[12];
char fwdToDevi ce[12] ;
3

The structure contains the following fields:
— deviceld

This character string contains the identifier for the device.
- mode

This field specifies whether forwarding is enabled or disabled. It contains

B-54 Features Specific to the CSTA Protocol

one of the following values:

ctcK_On
ctcK_Off

— acdDevice

This character string contains the number for the ACD group to be
forwarded.

- fwdToDevice

This character string contains the number for the destination device.

e ercEvtAssociateData

This element contains the dialable string associated with an external caller.

= ercFreeQueuePos

This element is used to release a saved queue position for a call deflected
from the queue. It is defined as the following fixed-format structure:
ct cErcConnecti onl d{

char deviceld [12];
unsi gned int cal | Refl d;

b
The structure contains the following fields:
— deviceld
This character string contains the identifier for the queue.
- callRefld
This 32-bit field contains the reference identifier for the deflected call.
B.15.4 Private Data Routines

The following pages describe each of the private data routines supported.

Features Specific to the CSTA Protocol B-55

ctcCstaEscape

ctcCstaEscape
Exchange Private Data With the Switch
Format in C
unsigned int ctcCstaEscape (ctcChanld channel,
CtcPrivateDataArray *privateDataArray)
Description

This routine enables you to send and receive private data from the switch. The
type of data you can exchange depends on the switch you are using. For more
information, refer to your switch documentation or consult your switch support
contact.

Differences Between ctcCstaEscape, ctcCstaSetPrivateData, and
ctcCstaGetPrivateData

Both ctcCstaEscape and ctcCstaSetPrivateData enable you to send private data
to the switch. However, with ctcCstaSetPrivateData, the data is stored on the
CTC server and sent to the switch when you next call a CTC routine for that
channel. ctcCstaEscape enables you to send private data to the switch without
associating it with another CTC routine.

Similarly, ctcCstaEscape enables you to receive private data from the switch
when the routine returns. ctcCstaGetPrivateData retrieves private data stored
on the CTC server. The switch sends the data to the CTC server with the result
of the previous routine called for the channel.

For more information, refer to the descriptions of the ctcCstaSetPrivateData and
ctcCstaGetPrivateData routines in this appendix.

Alcatel, Ericsson MD110, and Hicom 300E Functions

A number of ctcCstaEscape values are specific to Alcatel 4400, Ericsson MD110,
and Hicom 300E switches. Using these values, you can determine the type of
private data you exchange with these switches. This enables you to tailor your
application so that it provides switch-specific functions.

Dialogic recommends you work with your switch support contact to ensure that
your application makes effective use of the flexibility offered by the
ctcCstaEscape routine.

B-56 Features Specific to the CSTA Protocol

ctcCstaEscape

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
returned by ctcAssign for the device in use.

The ctcChanld datatype is defined in a CTC definitions file (see Section 1.5).

privateDataArray

type: ctcPrivateDataArray
access: read and write
mechanism: by reference

This argument is the address of a fixed-format structure that contains the
private data. The structure is formatted as follows:

ctcPrivateDataArray {
ctcPrivateData privbData [3];
b

ctcPrivateDataArray is an array of three ctcPrivateData structures. For details,
refer to Section B.15.3.

Example

The following example shows how to call ctcCstaEscape to pass a single piece of
raw data to the switch. It also shows how to use ctcCstaEscape to receive any
private data at the switch. This private data is returned when ctcCstaEscape
returns.

{

unsi gned int status;
ctcPrivateDataArray privDataArray;
ctcPrivateData *privDat a;

char myData[] = “My private data”;

privData = &privDataArray.privData[0];
privData->privDataType = ctcK_PrivRaw;
privData->privDataValue.raw.datalen = strlen(myData);
strepy(privData->privDataValue.raw.data, myData);

/*

* Only one ctcPrivateData structure contains private data.
* For the other two structures in ctcPrivateDataArray, set
* the ctcPrivateDataType to ctcK_privNone.

*/

privDataArray.privData[1].privDataType = ctcK_PrivNone;

Features Specific to the CSTA Protocol B-57

ctcCstaEscape

privDataArray. privData[2].privDataType = ctcK PrivNone;

status = ctcCstaEscape (channel, &privDataArray);
If (status == ctcSuccess);

{
/* To receive any private data that may be at the switch
*/

for (i =0; i < 3; i++)

{
privData = &privDataArray. privDatali];
switch (privData->privDataType)

{

case ctcK PrivRaw
/*
* Handl e as appropriate
*/
br eak;
case ctcK_PriVvAl cAcdWai tingTi nme:
/*

* Handl e as appropriate

*/
br eak;
/*
* Add handlers for other private data
* as appropriate
*/
defaul t:
br eak;
}

}

return (status);

B-58 Features Specific to the CSTA Protocol

ctcCstaGetPrivateData

ctcCstaGetPrivateData
Get Private Data Stored on the CTC Server

Format in C
unsigned int ctcCstaGetPrivateData (ctcChanld channel,
ctcPrivateDataArray *privateDataArray)
Description

This routine retrieves private data sent by the switch with the result toa CTC
request. Private data can be sent by the switch whenever it sends a result
message to CTC. For example, when it responds to another CTC routine such as
ctcHangupCall.

The data is not sent to your application when the routine returns, but is stored
on the CTC server. You call ctcCstaGetPrivateData to retrieve the data.

The data content is specific to CSTA switches. For details, refer to your switch
documentation or consult your switch support contact.

Use this routine after calling a CTC routine that you know will generate private
data from the switch. CTC cannot provide notification that private data is stored
on the CTC server for the channel.

Note: If data is stored on the switch and you call another routine before
ctcCstaGetPrivateData, the private data is lost.

For details of the differences between ctcCstaGetPrivateData and
ctcCstaEscape, refer to the description of ctcCstaEscape.
Alcatel, Ericsson MD110, and Hicom 300E Functions

A number of ctcCstaGetPrivateData values are returned by Alcatel,
Ericsson MD110 (BC9), and Hicom 300E switches only.

If you are using one of these switches, Dialogic recommends you contact your
switch support representative for full details of the private data that can be
returned by the ctcCstaGetPrivateData routine.

Features Specific to the CSTA Protocol B-59

ctcCstaGetPrivateData

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
returned by ctcAssign for the device in use.

The ctcChanld datatype is defined in a CTC definitions file (see Section 1.5).

privateDataArray

type: ctcPrivateDataArray
access: write
mechanism: by reference

This argument is the address of a fixed-format structure that receives the
private data. The structure is formatted as follows:

ctcPrivateDataArray {
ctcPrivateData privData [3]
b

ctcPrivateDataArray is an array of three ctcPrivateData structures. For details
of the fields in this structure, refer to Section B.15.3.

B-60 Features Specific to the CSTA Protocol

ctcCstaGetPrivateEventData

ctcCstaGetPrivateEventData
Get Private Data Sent With Events

Format in C
unsigned int ctcCstaGetPrivateEventData (ctcChanld channel,
ctcPrivateDataArray privateDataArray)
Description

This routine retrieves private data associated with the last event returned on
the channel.

CTC notifies you that private data has been sent by the switch by returning a
value in the privateData field of the ctcEventData structure. Refer to the
description of ctcGetEvent in Chapter 2 for details.

To retrieve the private data, you must call ctcCstaGetPrivateEventData before
you repost ctcGetEvent. If you do not, the private data is lost.
Alcatel, Ericsson MD110, and Hicom 300E Functions

A number of ctcCstaGetPrivateEventData values are returned by Alcatel,
Ericsson MD110 (BC9), and Hicom 300E switches only.

If you are using one of these switches, Dialogic recommends you contact your
switch support representative for full details of the private data that can be
returned by the ctcCstaGetPrivateEventData routine.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
returned by ctcAssign for the device in use.

The ctcChanld datatype is defined in a CTC definitions file (see Section 1.5).

Features Specific to the CSTA Protocol B-61

ctcCstaGetPrivateEventData

privateDataArray

type: ctcPrivateDataArray
access: write
mechanism: by reference

This argument is the address of a fixed-format structure that receives the
private data. The structure is formatted as follows:

ctcPrivateDataArray {
ctcPrivateData privbData [3];

For details of the fields in this structure, refer to Section B.15.3.

B-62 Features Specific to the CSTA Protocol

ctcCstaGetPrivateRouteData

ctcCstaGetPrivateRouteData
Get Private Data Sent With Route Requests

Formatin C

unsigned int ctcCstaGetPrivateRouteData
(ctcChanld channel,
ctcPrivateDataArray *privateDataArray)

Description

This routine retrieves private data associated with the last route request sent by
the switch for the assigned channel.

CTC notifies you that private data has been sent by the switch by returning a
value in the privateData field of the ctcRouteData structure. Refer to the
description of ctcGetRouteQuery in Chapter 2 for details.

To retrieve the private data, you must call ctcCstaGetPrivateRouteData before
you repost ctcGetRouteQuery. If you do not, the private data is lost.

Alcatel, Ericsson MD110, and Hicom 300E Functions

A number of ctcCstaGetPrivateRouteData values are returned by Alcatel,
Ericsson MD110 (BC9), and Hicom 300E switches only.

If you are using one of these switches, Dialogic recommends you contact your
switch support representative for full details of the private data that can be
returned by the ctcCstaGetPrivateRouteData routine.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
returned by ctcAssign for the device in use.

The ctcChanld datatype is defined in a CTC definitions file Section 1.5.

Features Specific to the CSTA Protocol B-63

ctcCstaGetPrivateRouteData

privateDataArray

type: ctcPrivateDataArray
access: write
mechanism: by reference

This argument is the address of a fixed-format structure that receives the
private data. The structure is formatted as follows:

ctcPrivateDataArray {
ctcPrivateData privbData [3];

For details of the fields in this structure, refer to Section B.15.3.

B-64 Features Specific to the CSTA Protocol

ctcCstaSetPrivateData

ctcCstaSetPrivateData
Set Private Data

Formatin C

unsigned int ctcCstaSetPrivateData
(ctcChanld channel,
ctcPrivateDataArray *privateDataArray)

Description

This routine sends private data to the switch for the specified channel. This data
is stored on the CTC server until you call a CTC routine for that channel that
sends a message to the switch. For details of the CTC routines that provide this
information to the switch, contact Dialogic and your switch manufacturer.

For details of the differences between ctcCstaGetPrivateData and
ctcCstaEscape, refer to the description of ctcCstaEscape.
Alcatel, Ericsson MD110, and Hicom 300E Functions

A number of ctcCstaSetPrivateData values can be used to send private data to
Alcatel, Ericsson MD110 (BC9), and Hicom 300E switches.

If you are using one of these switches, Dialogic recommends you contact your
switch support representative for full details of the private data that can be sent
using the ctcCstaSetPrivateData routine.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
returned by ctcAssign for the device in use.

The ctcChanld datatype is defined in a CTC definitions file (see Section 1.5).

Features Specific to the CSTA Protocol B-65

ctcCstaSetPrivateData

privateDataArray

type: ctcPrivateDataArray
access: read

mechanism: by reference

This argument is the address of a fixed-format structure that sends the private
data. The structure is formatted as follows:
ctcPrivateDataArray {
ctcPrivateData privData [3];

For details of the fields in this structure, refer to Section B.15.3.

B-66 Features Specific to the CSTA Protocol

ctcCstaSetPrivateData

B.16 Condition Values Returned

This section lists the condition values returned by a switch supporting the CSTA
protocol. See Chapter 3 for definitions of these condition values. The specific
condition values that can be returned for individual routines depend on your
switch.

ctcBadObjState
ctcConfMemberLimEXx
ctcExTrunkLimEx
ctclnvalidDest
ctclnvalidFeature
ctclnvAllocState
ctclnvCalledDevice
ctclnvCallldentifier
ctclnvCallingDevice
ctclnvConnldActCall
ctcInvConnldentifier
ctclnvCrossRefld
ctclnvDevldentifier
ctclnvForwardingDest
ctclnvObjectType
ctclnvPrivateData
ctcNetBusy
ctcNetOutOfServ
ctcNoActiveCall
ctcNoCallToAnswer
ctcNoCallToClear
ctcNoCallToComplete
ctcNoConnToClear
ctcNoHeldcCall
ctcNoPrivateData
ctcObjectNotKnown
ctcObjMonLimEXx
ctcOpGeneric
ctcOptNotSup
ctcOutstandReqLimEX
ctcOverallMonLimEx
ctcPacErr
ctcPerfGeneric
ctcPerfLimEXx
ctcPrivateCstaErr
ctcPrivViolCalledDev
ctcPrivViolCallingDev
ctcPrivViolSpecDev
ctcRegIncomWithODbj

Features Specific to the CSTA Protocol B-67

ctcCstaSetPrivateData

ctcResourceBusy
ctcResOutOfServ
ctcSealErr
ctcSecGeneric
ctcSecurityViol
ctcSeqNumErr
ctcServiceBusy
ctcStGeneric
ctcSubsGeneric
ctcSwitchDisabled
ctcSwitchEnabled
ctcSwitchlnit
ctcSwitchOverRel
ctcSysGeneric
ctcTimeStampErr
ctcUnspecCstaErr
ctcValueOutOfRange

The following additional condition values can be returned by switches
supporting CSTA Phase II:

ctclnvAccountCode
ctcinvApplCorrelator
ctclnvAuthCode
ctcReglncomWithCallingDev
ctcReglncomWithCalledDev

B-68 Features Specific to the CSTA Protocol

C

Features Specific to the Lucent DEFINITY
Generic

This appendix identifies aspects of CTC that are specific to a link with Lucent
DEFINITY Generic 3 (G3) switches that CTC supports at this version. It
indicates which routines are supported by these switches, and notes any
differences between the supported routines and the descriptions in Chapter 2.

Appendix A lists the CTC features and functions Dialogic believes will be
available with all switches supported by future versions of CTC. If you need to
write applications that will work with more than one switch, Appendix A.

Features Specific to the Lucent DEFINITY Generic C-1

C.1 CTC Functions Supported by DEFINITY G3 Switches

Table C-1 indicates which routines are supported by the DEFINITY G3
switches. If a routine is listed as Supported as noted, all limitations are
documented in this appendix.

Table C-1 CTC Routines for DEFINITY G3 Switches

Name of Routine

Support

ctcAddMonitor
ctcAnswerCall
ctcAssign
ctcAssociateData
ctcCancelCall
ctcConferenceJoin
ctcConsultationCall
ctcDeassign
ctcDeflectCall
ctcErrMsg
ctcGetAgentStatus
ctcGetCallForward

ctcGetChannellnformation

ctcGetDoNotDisturb
ctcGetEvent

ctcGetMessageWaiting

ctcGetMonitor
ctcGetRouteQuery

ctcGetRoutingEnable

ctcHangupCall
ctcHoldCall
ctcMakeCall

Supported fully

Supported fully

Supported as noted in Section C.3
Not supported

Supported as noted in Section C.4
Supported fully

Supported fully

Supported fully

Supported as noted in Section C.57
Supported fully

Supported as noted in Section C.6
Supported as noted in Section C.7
Supported as noted in Section C.8
Supported fully

Supported as noted in Section C.9
Supported fully

Supported fully

Supported as noted in Section C.10
Not supported

Supported as noted in Section C.11
Supported fully

Supported as noted in Section C.12

tNot supported for DEFINITY G3 switches running ASAI Generic 3 Version 3 software.

See Section C.2.

C-2 Features Specific to the Lucent DEFINITY Generic

Table C-1 CTC Routines for DEFINITY G3 Switches (Continued)

Name of Routine

Support

ctcMakePredictiveCall
ctcPickupCall
ctcReconnectHeld
ctcRemoveMonitor
ctcRespondTolnactive
ctcRespondToRouteQuery
ctcRetrieveHeld
ctcSendDTMF
ctcSetAgentStatus
ctcSetCallForward
ctcSetDoNotDisturb
ctcSetMessageWaiting
ctcSetMonitor
ctcSetRoutingEnable
ctcSingleStepTransfer
ctcSnapshot
ctcSwapWithHeld
ctcTransferCall
ctcWinGetEvent
ctcWinGetRouteQuery

Supported as noted in Section C.13
Not supported

Supported fully

Supported fully

Not supported

Supported as noted in Section C.14
Supported fully

Supported as noted in Section C.27
Supported as noted in Section C.15
Supported as noted in Section C.16
Supported as noted in Section C.17
Supported fully

Supported fully

Not supported

Not supported

Supported as noted in Section C.18%
Supported fully

Supported fully

Supported as noted in Section C.9
Supported as noted in Section C.10

tNot supported for DEFINITY G3 switches running ASAI Generic 3 Version 3 software.
See Section C.2.

Sections C.2 to C.17 contain information you require for writing a CTC
application that uses a link to a DEFINITY G3 switch.

This information includes details of the technical distinctions to note when using
the routines listed as Supported as noted in Table C-1. If you write an
application that uses these features, you will probably have to modify it to work
with other CTC-compatible switches.

Features Specific to the Lucent DEFINITY Generic C-3

C.2 Lucent DEFINITY Software

CTC uses the ASAI (Adjunct/Switch Application Interface) protocol to
communicate with DEFINITY G3 switches.

Table C-1 shows support for CTC routines if the Lucent DEFINITY switch is
running ASAI Generic 3 Version 4 (G3V4) or later.

If the switch is running ASAI Generic 3 Version 3 (G3V3):
« The following CTC routines are not supported:

ctcDeflectCall
ctcSendDTMF
ctcSnapshot

= The ctcK_AgentLoggedOn event is not supported.

C.3 ctcAssign

This section describes operating differences and points to note when you use
ctcAssign with the DEFINITY G3.

C.3.1 Supported Devices
You can assign a channel to the following devices:

= \oice sets (telephones)

e Groups (ACD splits and skill-based hunt groups on DEFINITY switches that
support Expert Agent Selection)

< Route points

< Monitor channels

C.3.2 Assigning a Channel to a Route Point

To assign a channel to a route point, specify the Vector Directory Number (VDN)
of the call vector that includes an adjunct routing point. Route point isa CTC
term for a VDN.

C.3.3 Devices and Supported Routines

Table C-2 shows the routines supported for each type of device. A cross (X)

C-4 Features Specific to the Lucent DEFINITY Generic

indicates that the routine is supported.

Table C-2 Routines Supported for DEFINITY G3 Devices

CTC Routine Voice Set Groupt Route Point Monitor
Channel

ctcAddMonitor X
ctcAnswerCall

ctcAssign

ctcCancelCall
ctcConferenceJoin
ctcConsultationCall
ctcDeassign

ctcDeflectCall

ctcErrMsg
ctcGetAgentStatus
ctcGetCallForward
ctcGetChannellnformation
ctcGetDoNotDisturb
ctcGetEvent

ctcGetMessageWaiting

X X X X X X X X X X X X X X X
X
X
X

ctcGetMonitor
ctcGetRouteQuery

X
X

ctcHangupCall
ctcHoldCall
ctcMakeCall X

ctcMakePredictiveCall X X
ctcReconnectHeld X

ctcRemoveMonitor X
ctcRespondToRouteQuery X
ctcRetrieveHeld X

tChannels assigned to ACD splits or skill-based hunt groups.

Features Specific to the Lucent DEFINITY Generic C-5

Table C-2 Routines Supported for DEFINITY G3 Devices (Continued)

CTC Routine Voice Set Groupt Route Point Monitor
Channel

ctcSetAgentStatus
ctcSetCallForward
ctcSetDoNotDisturb
ctcSetMessageWaiting
ctcSetMonitor
ctcSendDTMF
ctcSnapshot
ctcSwapWithHeld

ctcTransferCall

X X X X X X X X X X
X
X

ctcWinGetEvent
ctcWinGetRouteQuery X

tChannels assigned to ACD splits or skill-based hunt groups.

C.4 ctcCancelCall

This section describes operating differences when you use ctcCancelCall with
the DEFINITY G3. For a full description of this routine, refer to Chapter 2.

C.4.1 Device State

When the ctcCancelCall routine disconnects a consultation call, the assigned
device returns to the idle state, rather than the initiate state.

C.5 ctcDeflectCall

This section describes operating differences and points to note when you use
ctcDeflectCall with the DEFINITY G3. For a full description of this routine,
refer to Chapter 2.

C.5.1 Required Software
The ctcDeflectCall routine is supported by switches running ASAI G3V4 or later.

C.5.2 Supplying Application Data
The applicationData argument for this routine is not supported. Pass a

C-6 Features Specific to the Lucent DEFINITY Generic

zero-length, NUL-terminated string with this argument.

C.6 ctcGetAgentStatus

This section describes operating differences when you use ctcGetAgentStatus
with the DEFINITY G3. For a full description of this routine, refer to Chapter 2.

C.6.1 Supplying Agent Data

If the switch you are using does not support Expert Agent Selection (EAS), you
must supply the device number of a group (an ACD split) with the agentData
argument. For DEFINITY G3 switches, the access for this argument is read
and write.

The agentData argument usually returns information from the CTC server (see
the description of this ctcGetAgentStatus argument in Chapter 2). However,
because the DEFINITY G3 allows an agent to log in to more than one ACD split
at a time, your application must supply a device number so that the correct ACD
split can be identified.

If the switch you are using is set up to support EAS, you do not need to specify
information with the agentData argument.

C.7 ctcGetCallForward

This section describes operating differences when you use ctcGetCallForward
with the DEFINITY G3. For a full description of this routine, refer to Chapter 2.

C.7.1 cCall Forward Modes

The only forwardMode value returned is ctcK_CfAll. Other forwardMode values
are not supported.

C.8 ctcGetChannellnformation

This section describes operating differences and point to note when you use
ctcGetChannellnformation with the DEFINITY G3. For a full description of this
routine, refer to Chapter 2.

Features Specific to the Lucent DEFINITY Generic C-7

C.8.1 Line Types

The following values can be returned in the lineType field of the ctcChanData
structure:

ctcK_LineACD
ctcK_LineMonitorChannel
ctcK_LineRoutePoint
ctcK_LineVoiceSet

The values ctcK_LineDataSet and ctcK_LineTrunk are not supported.

C.8.2 Set Types
The values returned in the setType field of the ctcChanData structure are:

ctcK_AsaiSetAnalog
ctcK_AsaiSetProprietary
ctcK_AsaiSetBasicRatelSDN

C.8.3 Switch-Specific Support

If you are using the DEFINITY G3-specific routine, ctcAsaiGetAcdStatus (see
Section C.19), the following value can be returned in the switchSpecificSupport
field for the DEFINITY G3:

ctcM_AsaiGetAcdStatus

C.9 ctcGetEvent and ctcWinGetEvent

This section describes operating differences and points to note when you use
ctcGetEvent or ctcWinGetEvent with the DEFINITY G3. For a full description of
these routines, refer to Chapter 2.

C.9.1 Fields Used in the ctcEventData Structure

Table C-3 shows which fields are used in the ctcEventData structure for
DEFINITY G3 switches. If Table C-3 specifies that the field is Not supported,
CTC always returns null data for that field.

Table C-3 Event Information Supported by DEFINITY Switches

Field Support

refld See Chapter 2
netCallld Not supported
oldRefld See Chapter 2

C-8 Features Specific to the Lucent DEFINITY Generic

Table C-3 Event Information Supported by DEFINITY Switches (Continued)

Field Support

oldNetCallld Not supported

state See Section C.9.10

event See Sections C.9.2, C.9.3, C.9.4, and C.9.6

eventQualifier

type
otherPartyType
otherPartyQualifier
otherParty
otherPartyTrunk
otherPartyGroup
thirdPartyType
thirdPartyQualifier
thirdParty
thirdPartyTrunk
thirdPartyGroup
calledPartyType
calledPartyQualifier
calledParty
calledPartyTrunk
calledPartyGroup
applicationData

monitorParty

nestedMonitorChannel

agentMode
agentld
agentGroup

agentData

See C.9.11

See C.9.9

See C.9.7

See C.9.8

See Sections D.8.12 and C.9.13
See Chapter 2

See Chapter 2

See Section C.9.7
See Section C.9.8
See Sections D.8.12 and C.9.13
See Chapter 2

See Chapter 2

See Section C.9.7
See Section C.9.8
See Section C.9.13
See Chapter 2

See Chapter 2

See Section C.9.14
See Chapter 2

See Chapter 2

See Section C.9.6
See Chapter 2

See Chapter 2

Not supported

Features Specific to the Lucent DEFINITY Generic

C-9

Table C-3 Event Information Supported by DEFINITY Switches (Continued)

Field Support
logicalAgent See Section C.9.6
dtmfDigits Not supported
originatingPartyType Not supported
originatingPartyQualifier Not supported
originatingParty Not supported
originatingPartyTrunk Not supported
originatingPartyGroup Not supported
secOldRefld Not supported
callsQueued Not supported
accountlnfo Not supported

timeStamp

privateData

See Section C.9.15
Not supported

C.9.2 Events Not Returned

The following events are not supported by the DEFINITY G3:

ctcK_AgentModeChange

ctcK_BacklInService

ctcK_Calllnformation

ctcK_Destlnvalid

ctcK_DestNotObtainable

ctcK_Error

ctcK_OffhookPrompt
ctcK_OutOfService

ctcK_Private

C.9.3 Information Returned for Channels Assigned to Route Points or Groups

If you assign a channel to a route point (VDN) or group (an ACD split or
skill-based hunt group), the ctcGetEvent and ctcWinGetEvent routines return
information about telephone activity for that route point or group. You can also
receive information on a call originally active on the route point or group queue
that has then been switched to another device.

A call can be switched to another device if:

= The call has been answered by an agent of the group.

C-10 Features Specific to the Lucent DEFINITY Generic

= The call has been sent to a coverage path for the group.

« The call has been routed.

C.9.4 Events Returned for Channels Assigned to Groups
For channels assigned to groups, the following events are supported:

ctcK_AgentLoggedOn
ctcK_AgentLoggedOut

The agent can log on or log out either by pressing a key on the telephone keypad
or by using ctcSetAgentStatus.

C.9.5 Event Returned for Monitored Groups

DEFINITY G3 switches support an extra monitoring event for groups (queues or
ACD splits). The ctcK_DestinationChanged event is returned when a call has
been delivered to an extension or agent of another ACD split.

C.9.6 Agent Events
Only the following agent events are supported:

= ctcK_AgentLoggedOff for switches running ASAI G3V3 software.

= ctcK_AgentLoggedOn and ctcK_AgentLoggedOff for switches running ASAI
G3V4 or later software.

The following table shows agent information returned in ctcEventData fields for
these events.

Event Field Contents

ctcK_AgentLoggedOn

agentMode ctcK_AgentLogin
agentld Identifier for the agent
agentGroup DN for the group
agentData Null

logicalAgent DN for a logical agentt

tIf the switch you are using is set up to support Expert Agent Selection (EAS), information is also
returned in the logicalAgent field.

Features Specific to the Lucent DEFINITY Generic C-11

Event Field Contents

ctcK_AgentLoggedOff

agentMode ctcK_AgentLogout
agentld Identifier for the agent
agentGroup DN for the group
agentData Null

logicalAgent DN for a logical agentt

tIf the switch you are using is set up to support Expert Agent Selection (EAS), information is also
returned in the logicalAgent field.

C.9.7 Party Type Information

ctcK_Dn is the only value returned by DEFINITY G3 switches in the following
party fields:

otherPartyType
thirdPartyType
calledPartyType

The values ctcK_Lineld (for CLID) and ctcK_Dnis (for DNIS) are not supported.

C.9.8 Party Qualifier

The DEFINITY G3 switches can return additional party information in the
following fields:

otherPartyQualifier
thirdPartyQualifier
calledPartyQualifier

Each field can contain one of the following literals:

ctcK_AlertingDevice
ctcK_AnsweringDevice
ctcK_CalledNumber
ctcK_CallingDevice
ctcK_ConfController
ctcK_HoldingDevice
ctcK_NewRedirection
ctcK_ReleasingDevice
ctcK_RetrievingDevice
ctcK_TransferringDevice

C-12 Features Specific to the Lucent DEFINITY Generic

C.9.9 Call Types

If your Lucent DEFINITY switch is running ASAI G3V5, CTC can return the
values shown in Table C—4 in the type field of the ctcEventData structure.

If your switch is running an earlier version of ASAI, CTC returns null data only.

Table C-4 DEFINITY Call Types

Value

Description

ctcK_AsaildentifiedLine

ctcK_AsaiMultipartyNoANI
ctcK_AsaiANIfailure
ctcK_AsaiHotelMotel

ctcK_AsaiOperatorHandlingRequired

ctcK_AsaiAlOD

ctcK_AsaiCoinOrNonCoin
ctcK_Asai800ServiceCall
ctcK_AsaiCoinCall
ctcK_AsaiPrisonlnmateService
ctcK_Asailntercept30
ctcK_Asailntercept31
ctcK_Asailntercept32
ctcK_AsaiTelcoOperatorHandled

ctcK_AsaiOutWATS

ctcK_AsaiTRSstationPaid

ctcK_AsaiTypelCellular
ctcK_AsaiType2Cellular

ctcK_AsaiRomerCellular

The line is identified. There is no special
treatment for the call.

The switch cannot provide ANI for the call.
AN failed for the call.

Automatic room identification was not supplied
with the hotel or motel DN.

Special operator handling is required.

Automatic Identification of Outbound DNs. The
DN (for example, extension number) was
supplied by the PBX.

The line status is unknown.

The call is an 800 service call.

The call was made from a coin-operated device.
The call is a prison service call.

Intercepted call (30).

Intercepted call (31).

Intercepted call (32).

The call was handled by a local
telecommunications company operator.

The call is an outbound Wide Area
Telecommunications Service (WATS) call.

The Telecommunications Relay Service (TRS)
station paid.

The call is a Type 1 cellular call.
The call is a Type 2 cellular call.

The call is a roamer cellular call.

Features Specific to the Lucent DEFINITY Generic C-13

Table C-4 DEFINITY Call Types (Continued)

Value Description
ctcK_AsaiTRSfromHotelMotel TRS from a hotel or motel.
ctcK_AsaiTRSfromRestrictedLine TRS from a restricted line.

ctcK_AsaiPrivatePaystation

ctcK_AsaiPrivateVirtualNetwork

network.

The call is from a private paystation.

The call was made over a private virtual

Note that the values supported may be returned for certain geographical regions

only. CTC may also return additional values sent by the switch. To interpret

these values, or to obtain more information about the values in Table C—4, refer

to Bellcore’s Local Exchange Routing Guide (TR-EOP-000085). For details,

contact Bellcore.

C.9.10 Call Events and States
Table C-5 shows the possible device states that can be returned for each call

event.

Table C-5 Call Events and States Returned

Event Description States
ctcK_DestBusy The dialed destination is busy. Fail
ctcK_DestChanged The call from the assigned device was Deliver
redirected to another destination. Queued
ctcK_DestSeized A call has been successfully dialed. If this Deliver
call is external to the ACD, the network Queued
number has been verified and the
outbound trunk seized. This does not
indicate that the other end is actually
ringing or answered.
ctcK_Diverted A call has been diverted from this device Null
to another.
ctcK_InboundcCall A new call has arrived at the assigned Receive
device prior to routing. Queued
ctcK_Offhook A new call has been made from the Initiate

assigned device.

C-14 Features Specific to the Lucent DEFINITY Generic

Table C-5 Call Events and States Returned (Continued)

Event Description States
ctcK_OpAnswered The other party has answered the call Active
from the assigned device.
ctcK_OpConferenced The other party on the call has created a Active

conference call.
ctcK_OpDisconnected The other party has hung up. Null
ctcK_OpHeld The other party is on hold. Hold
ctcK_OpRetrieved The held party has been retrieved. Active
ctcK_Other An event has occurred during the call (see Fail
Section C.9.11).
ctcK_TpAnswered A call has been connected to this party. Active
Queued
ctcK_TpConferenced This party has been connected in a Active
conference call.
ctcK_TpDisconnected This party has been disconnected possibly Null
because a call has been transferred, or Fail
because the telephone was off-hook too
long.
ctcK_TpRetrieved The held call has been retrieved by this Active
party.
ctcK_TpSuspended This party has placed a call on hold. Hold
ctcK_Transferred The call has been transferred from Active
another device, or this party transferred Null

the call

C.9.11 Call Event Qualifiers for DEFINITY G3 Switches

This section describes the DEFINITY G3 qualifiers for call events. Call events
occur during the progress of a call and, along with call states, indicate the
success or failure of calls on the monitored device. The qualifier can provide
more information on the nature of the event.

CTC returns information about call events in the eventData structure returned
by ctcGetEvent and ctcWinGetEvent. A DEFINITY G3 switch supplies more
detailed information on events, and CTC returns this additional information in

Features Specific to the Lucent DEFINITY Generic C-15

the eventQualifier field.

To determine which event has occurred, compare the value returned in the
eventQualifier field with the literals listed as ctcK_Asai... in Table C—6. These
literals define the possible qualifiers returned by a DEFINITY G3 switch and
are supplied in the definitions file installed on your system.

Table C-6 Call Event Qualifiers for DEFINITY G3 Switches

Qualifier Literal

Description

ctcK_AsaiUserBusy
ctcK_AsaiCallRejected

ctcK_AsailnvalidNumber

ctcK_AsaiNormUnspecified
ctcK_AsaiNoCircuit
ctcK_AsaiCallsBarred

ctcK_AsailncompatibleDest

ctcK_AsaiUnspecified
ctcK_AsaiTimedAnswer
ctcK_AsaiVoiceEnergyAnswer
ctcK_AsaiTrunksNotAvailable
ctcK_AsaiQueuesFull

ctcK_AsaiRemainsIinQueue

ctcK_AsaiAnsweringMachine
ctcK_AsailnvalidCallld

ctcK_AsaiNormalClearing

The number that has been called is busy.

The caller is hearing the reorder tone. The call could
not be placed.

The called number does not fit in with the switch'’s
number plan.

Normal, unspecified qualifier.
No switch circuits are available.
The switch has barred that type of call.

Either something is wrong with the dialed digits or
a data set has answered a switch-classified
(predictive) call.

The call has failed for an unspecified reason.

Call answered on a non-1SDN trunk.

Classifier detected answer.

No trunks are currently available to make the call.
The group queues (ACD splits) are full.

The call is still queued at the original device even
though other events may be returned.

Answering machine detected.
Invalid call identifier.

The call has been cleared due to a transfer
operation.

C-16 Features Specific to the Lucent DEFINITY Generic

C.9.12 Mapping Qualifiers to Events

Table C-7 indicates which qualifiers may be generated by an event. Note that
some events do not generate qualifiers and therefore are not included in this
table.

Table C—7 DEFINITY Event Information Returned

Event Qualifiers

ctcK_DestBusy

ctcK_AsaiTrunksNotAvailable
ctcK_AsaiQueuesFull
ctcK_AsaiNoCircuit
ctcK_AsaiUserBusy

ctcK_DestSeized

ctcK_AsaiRemainsIinQueue

ctcK_OpDisconnected

ctcK_AsaiUnspecified
ctcK_AsaiNormalClearing

ctcK_Other

ctcK_AsaiUnspecified

ctcK_OpAnswered

ctcK_AsaiUnspecified
ctcK_AsailnvalidNumber
ctcK_AsaiNormUnspecified
ctcK_AsaiTimedAnswer
ctcK_AsaiVoiceEnergyAnswer
ctcK_AsaiAnsweringMachine

ctcK_TpAnswered

ctcK_AsaiUnspecified
ctcK_AsaiNormUnspecified

Features Specific to the Lucent DEFINITY Generic C-17

Table C-7 DEFINITY Event Information Returned (Continued)

Event Qualifiers

ctcK_TpDisconnected

ctcK_AsaiUnspecified
ctcK_AsaiCallRejected
ctcK_AsaiCallsBarred
ctcK_AsailncompatibleDest
ctcK_AsaiAnsweringMachine
ctcK_AsailnvalidCallld
ctcK_AsailnvalidNumber
ctcK_AsaiNormalClearing

C.9.13 Party Information for Call Events

Table C-8 shows the DEFINITY G3 party information returned for supported
call events.

Table C-8 DEFINITY Party Information for Call Events

Event Field Party Information Explanation

ctcK_DestBusy

Other Null
Third Null
Called Busy Party

ctcK_DestChanged

Other Ringing Party

Third Null New ACD DN if call has moved
to another ACD.

Called Called Number

ctcK_DestSeized

Other Ringing Party Can be called party for trunk
seized or cut through.

Third Null Can be calling party when a call
to the monitored ACD is ringing
at an agent.

Called Called Number

C-18 Features Specific to the Lucent DEFINITY Generic

Table C-8 DEFINITY Party Information for Call Events (Continued)

Event Field Party Information Explanation
ctcK_Diverted

Other Null

Third New group queue DN

Called

ctcK_InboundcCall

Other Calling Party
Third Null
Called Called Number
ctcK_Offhook
Other Null
Third Null
Called Null or Called Number The called number is returned

after the number has been
dialed.

ctcK_OpAnswered

Other
Third

Called

Answering Party

Calling Party for ACD
monitoring

Called Party

ctcK_OpConferenced

Other

Third

Called

Party joining conference
or Conference Controller

Conference Controller or
Original Party

Null

ctcK_OpDisconnected

Other
Third
Called

Disconnecting Party
Null
Null

Features Specific to the Lucent DEFINITY Generic C-19

Table C-8 DEFINITY Party Information for Call Events (Continued)

Event Field Party Information Explanation
ctcK_OpHeld

Other Holding Party

Third Null

Called Null

ctcK_OpRetrieved

Other Retrieving Device When a held call is retrieved.
Third Null
Called Null
ctcK_Other
Other Null
Third Null
Called Null

ctcK_TpAnswered

Other

Third
Called

Party at Other End of

Call
Null
Called Number

Calling party.

ctcK_TpConferenced

Other New Party

Third Original Party

Called Null
ctcK_TpDisconnected

Other Null

Third Null

Called Null

C-20 Features Specific to the Lucent DEFINITY Generic

Table C-8 DEFINITY Party Information for Call Events (Continued)

Event Field Party Information Explanation

ctcK_TpRetrieved

Other Null
Third Null
Called Null

ctcK_TpSuspended

Other Null
Third Null
Called Null

ctcK_Transferred

Other New Party Connected When the original party
transfers a call in progress to a
new party.

Third Transferring Party

Called Null

Table C-8 gives only DEFINITY party information. For other switch-specific
tables (for example, Meridian), refer to the specific appendix. For a description of
each event (such as ctcK_DestBusy), see Table 2-5.

C.9.14 Application Data for Events

DEFINITY G3 switches can return application data for the following events:

ctcK_InboundcCall
ctcK_DestinationSeized
ctcK_DestinationChanged

C.9.15 Time Stamp

This field returns the date and time the event is processed on the CTC server, as
described in Chapter 2.

Returning the date and time on the switch is not supported by DEFINITY
switches.

Features Specific to the Lucent DEFINITY Generic C-21

C.10 ctcGetRouteQuery and ctcWinGetRouteQuery

This section describes operating differences and points to note when you use
ctcGetRouteQuery or ctcWinGetRouteQuery with the DEFINITY G3. For a full
description of these routines, refer to Chapter 2.

These routines present a call to the application so that the call can be routed.
They are supported for channels assigned to Vector Directory Numbers (VDN)
only. In CTC terms, VDNSs are route points.

C.10.1 Fields Used in the ctcRouteData Structure

Table C-9 shows which fields in the ctcRouteData structure are used by
DEFINITY G3 switches. If Table C-9 shows that a field is Not supported, CTC
always returns null data for that field.

Table C-9 Route Information Supported by DEFINITY G3

Switches
Field Support
routeld As described in Chapter 2
refld As described in Chapter 2
spare001 Not supported
otherPartyType See Section C.10.2
otherParty As described in Chapter 2
otherPartyTrunk As described in Chapter 2
otherPartyGroup As described in Chapter 2

thirdPartyType
thirdParty
thirdPartyTrunk
thirdPartyGroup
calledPartyType
calledParty
calledPartyTrunk
calledPartyGroup

applicationData

Not supported

Not supported

Not supported

Not supported

See Section C.10.2

As described in Chapter 2
Not supported

Not supported

As described in Chapter 2

C-22 Features Specific to the Lucent DEFINITY Generic

Table C-9 Route Information Supported by DEFINITY G3
Switches (Continued)

Field Support
dtmfDigits See Section C.10.3
timeStamp See Section C.10.4
privateData Not supported

C.10.2 otherPartyType and calledPartyType Fields

ctcK_Dn is the only value returned by DEFINITY G3 switches in the
otherPartyType and calledPartyType fields of the ctcRouteData structure.

C.10.3 DTMF Digits

If the call vector includes a “Collect Digits” stage, any DTMF digits entered will
be returned in the dtmfDigits field.

C.10.4 Time Stamp

If the link is configured to return a time stamp from the CTC server, the
timeStamp field contains the data and time the CTC server processed the route
request. For more information, refer to the description of this field in Chapter 2.

If the link is configured to return a time stamp from the DEFINITY G3, this
field contains null data. The DEFINITY G3 does not support time stamp
information.

For more information about changing the configuration of a link, refer to the
CT-Connect Installation and Administration Guide for your CTC server
platform.

C.11 ctcHangupcCall

This section describes operating differences and points to note when you use
ctcHangupCall with the DEFINITY G3. For a full description of this routine,
refer to Chapter 2.

C.11.1 Supported Devices
The ctcHangupCall routine is supported for channels assigned to groups (ACD
splits) and route points (VDNSs) only.

C.11.2 Disconnecting Calls Made With ctcMakePredictiveCall
The ctcHangupCall routine can be used on channels assigned to ACD split DNs

Features Specific to the Lucent DEFINITY Generic C-23

and VDNs to disconnect calls made using the ctcMakePredictiveCall routine.
These calls can be disconnected at any time before or after they are answered at
the destination device. The callRefID of the call must be passed into
ctcHangupCall.

Calls that arrive at an ACD split or VDN that have not been made using
ctcMakePredictiveCall cannot be disconnected in this way and an attempt to do
so results in a ctclnvCallldentifier condition value.

C.12 ctcMakecCall

This section describes operating differences and points to note when you use
ctcMakeCall with the DEFINITY G3. For a full description of this routine, refer
to Chapter 2.

C.12.1 Supported Devices
The ctcMakeCall routine is supported for channels assigned to voice sets
(telephones) only.

C.12.2 On-Hook Dialing
On-hook dialing is supported for all telephones.

C.12.3 Off-Hook Prompting

The off-hook prompting event is not supported for 2500 sets. The ctcMakeCall
routine does not complete until the 2500 set is taken off hook. If this action is not
taken within the time limit set on the switch, the routine returns with a
ctcReglncomWithCallingDev error.

C.13 ctcMakePredictiveCall

This section describes operating differences and points to note when you use
ctcMakePredictiveCall with the DEFINITY G3. For a full description of this
routine, refer to Chapter 2.

C.13.1 Supported Devices

The ctcMakePredictiveCall routine is supported for channels assigned to groups
(ACD splits or skill-based hunt groups) and route points only.

C-24 Features Specific to the Lucent DEFINITY Generic

C.13.2 Allocation
The following values are supported for the allocation argument:

Value Description

ctcK_AllocDefault Connection to an answer machine is not detected.

ctcK_AllocAMDAdmiIn Call treatment on detecting an answer machine is
specified in the switch administration.

ctcK_AllocAMDDrop End the call if an answer machine is detected.

ctcK_AllocAMDConnect Continue the call even if an answer machine is
detected.

C.13.3 Number of Rings

Specify a value in the range 2 to 15 with the numberOfRings argument. If you
pass the value zero, the switch uses the default of 15 rings.

C.14 ctcRespondToRouteQuery

This section describes operating differences and points to note when you use
ctcRespondToRouteQuery with the DEFINITY G3. For a full description of this
routine, refer to Chapter 2.

C.14.1 Dial-Ahead Digits

The newCalledNumber argument can be used to specify ASAl-provided
dial-ahead digits with the new route for the call.

ASAIl-provided dial-ahead digits allow you to associate DTMF digits with a call
so that the call can be treated in a specific way at the new destination (for
example, the digits can be used to indicate that a script is played). For more
information about ASAI-provided dial-ahead digits, refer to the documentation
provided with your switch.

To associate dial-ahead digits with the call, the newCalledNumber character
string must contain:

< The number that identifies the new route for the call
= The hash character (#)
= The additional dial-ahead digits

Note that the character is used to separate the number that identifies the new
route and the dial-ahead digits; it is not included in the digits sent to the switch.

Features Specific to the Lucent DEFINITY Generic C-25

C.15 ctcSetAgentStatus

This section describes operating differences and points to note when you use
ctcSetAgentStatus with the DEFINITY G3. For a full description of this routine,
refer to Chapter 2.

C.15.1 Supported Devices
The ctcSetAgentStatus routine is supported for channels assigned to voice sets
(telephones) only.

C.15.2 Logging In Agents on EAS Switches

CTC supports Expert Agent Selection (EAS). If the switch you are using is set up
to support EAS, you can specify information about the logical agent with the
logicalAgent argument, and you do not need to provide agentGroup information.

The following example sequence sets up logical agent information on a
DEFINITY G3 switch:

1. Assign a channel to the physical DN (the number of the telephone) at which
the agent logs in.

2. Call ctcSetAgentStatus, specifying the following information:

For this Specify...

argument...

channel Channel reference

agentMode ctcK_AgentLogin

agentData Password (if required) or the address of a zero-length character
string

logicalAgent DN for the logical agent

agentGroup Address of a zero-length character string

3. Call ctcGetAgentStatus to query information about the state of the agent. No
additional data is required: specify a zero-length character string with the
agentGroup and agentData arguments (even if you supplied a password
when the agent logged in).

4. Call ctcSetAgentStatus to change the agentMode information. No additional
data is required: specify a zero-length character string with the agentGroup
and agentData arguments (even if you supplied a password when the agent
logged in).

C-26 Features Specific to the Lucent DEFINITY Generic

C.15.3 Logging In Agents on Non-EAS Switches

If the switch you are using does not support EAS, you must supply the DN for a
group (ACD split) with the agentGroup argument whenever you use
ctcSetAgentStatus to change an agent’s work mode.

Because a DEFINITY G3 switch allows an agent to log in to more than one ACD
split at a time, the DN must be supplied so that the correct ACD split can be

identified.

For example, to log in an agent, you specify the following ctcSetAgentStatus
information:

For this Specify...

argument...

channel Channel reference

agentMode ctcK_AgentLogin

agentData Password (if required) or the address of a zero-length character string
logicalAgent Address of a zero-length character string

agentGroup DN for the agent group (ACD split)

After logging in the agent, do not specify a password with the agentData
argument for ctcSetAgentStatus. If you use ctcSetAgentStatus to change the
work mode for the agent, supply the address of a zero-length character string
with the agentData argument.

C.16 ctcSetCallForward

This section describes operating differences when you use ctcSetCallForward
with the DEFINITY G3. For a full description of this routine, refer to Chapter 2.

C.16.1 Supported Settings

The only forwardMode value supported is ctcK_CfAll (set call forward on all
calls).

C.17 ctcSetDoNotDisturb

This section describes operating differences when you use ctcSetDoNotDisturb
with the DEFINITY G3. For a full description of this routine, refer to Chapter 2.

Features Specific to the Lucent DEFINITY Generic C-27

C.17.1 Busy Signal

When Do-Not-Disturb is set on, the call is deflected to the DEFINITY G3's
coverage path. Therefore, when another party calls the assigned telephone, they
do not hear a busy signal.

C.18 ctcSnapshot

This section describes operating differences and points to note when you use
ctcSnapshot with the DEFINITY G3. For a full description of this routine, refer
to Chapter 2.

C.18.1 Required Software
The ctcSnapshot routine is supported by switches running ASAI G3V4 or later.

C.18.2 Supported States
DEFINITY G3 switches return the following states only:

ctcK_ReceiveState
ctcK_InitiateState
ctcK_HoldState
ctcK_ActiveState

Note that if a call made from the assigned device is ringing at the destination
device, the returned state is ctcK_ActiveState (and not ctcK_DeliverState as
indicated in Table 2—-4).

C.19 CTC Routine for the Lucent DEFINITY Switch

The following pages describe the Lucent DEFINITY-specific CTC routine that is
provided as an extension to the standard CTC API. This routine is for CTC
applications that will only be used with a Lucent DEFINITY switch.

To use this Lucent DEFINITY-specific CTC routine:
= You must assign the channel to an ACD split DN.

= When you use ctcAssign to assign the channel, you must specify the value
ctcK_ASAI in the APlextensions field of the ctcAssignData structure. If you
do not specify this value, you will not be able to use the routine for the
assigned channel. Refer to the description of ctcAssign in Chapter 2 for more
information.

C-28 Features Specific to the Lucent DEFINITY Generic

ctcAsaiGetAcdStatus

ctcAsaiGetAcdStatus
Query the Status of an ACD Queue

Formatin C

unsigned int ctcAsaiGetAcdStatus (ctcchanlD channel,
unsigned int *numberOfCalls,
unsigned int *numberOfLoggedInAgents,
unsigned int *numberOfAvailableAgents)

Description

The ctcAsaiGetAcdStatus routine returns information about the queue at an
ACD split.

Using this routine, you can find out:
= The number of calls currently queued at the ACD split.
= The number of agents who are logged into the ACD split.

= The number of agents who are logged into the ACD split and are available to

take calls.
Arguments
channel
type: ctcChanlID
access: read only

mechanism: by value

This argument is a ctcChanlD datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the device in use.
numberOfCalls

type: integer (unsigned)

access: write only

mechanism: by reference

This argument is the address of a 32-bit integer into which CTC writes the
number of calls currently queued at the ACD split.

Features Specific to the Lucent DEFINITY Generic C-29

ctcAsaiGetAcdStatus

numberOfLoggedInAgents

type: integer (unsigned)
access: write only
mechanism: by reference

This argument is the address of a 32-bit integer into which CTC writes the
number of agents who are logged into the ACD split.

numberOfAvailableAgents

type: integer (unsigned)
access: write only
mechanism: by reference

This argument is the address of a 32-bit integer into which CTC writes the
number of agents who are logged into the ACD split and are available to take
calls.

C-30 Features Specific to the Lucent DEFINITY Generic

D

Features Specific to Nortel Meridian
Switches

This appendix identifies aspects of CTC that are specific to a link with a Nortel
Meridian 1™ or Meridian SL-1™ switch. It contains:

= Details of the standard CTC routines supported and any operating
differences that are specific to Meridian 1 or Meridian SL-1 switches.

If you need to write an application that will work with more than one switch,
note the differences in this appendix. You should also refer to Appendix A for
details of the CTC features and functions that are supported by all switches.

= Meridian-specific CTC routines provided as extensions to the CTC API.
These routines are for CTC applications that will be used with a Meridian 1
or Meridian SL-1 only.

The procedures throughout this appendix apply to both the Meridian 1 and
Meridian SL-1 switches. However, for simplicity, only the term Meridian is used
throughout this appendix.

Features Specific to Nortel Meridian Switches D-1

D.1 Meridian Switch Software

For your application to use the standard CTC routines supported by the
Meridian (see Table D-2) and Meridian-specific routines (see Section D.16), your
Meridian switch must be running:

e X11 Release 16 or later of the Meridian switch software.
= Release 3.0 or later of the Meridian Link software.

Dialogic recommends X11 Release 19 or later and Meridian Link software
Release 4.0 or later. These releases support the CTC features shown in
Table D-1.

Table D-1 Meridian Software and Supported CTC Features

Meridian Switch Software Meridian Link CTC Features
Software

X11 Release 19 or later Release 4.0 Call references (see Section D.3.2)
X11 Release 21 or later Release 4.0 ctcSingleStepTransfer

X11 Release 22 or later Release 5.0 ctcHoldCall, ctcRetrieveHeld, additional call
(Co-Res 6.01 events (see Section D.8.7) and agent events
or later) (see Section D.8.6), and event time stamp

information (see Section D.8.16)

D.2 Standard CTC Functions Supported by a Meridian Switch

Table D-2 indicates which of the standard CTC routines are supported by
Meridian switches. These routines are described fully in Chapter 2. For details
of the Meridian-specific routines available with CTC, refer to Section D.16.

Note that the latest versions of the Meridian switch software and Meridian Link
software are required to support those routines shown as supported fully. See
Section D.1.

Sections D.3 to D.15 point out the technical distinctions to note when writing
applications that call the routines listed as Supported as noted in Table D-2. If
you write an application that uses these features, or any of the Meridian-specific
features described in Section D.16, you will have to modify it to work with other
CTC-compatible switches.

D-2 Features Specific to Nortel Meridian Switches

Table D-2 CTC Routines and Meridian Switches

Name of Routine Support

ctcAddMonitor Supported fully.

ctcAnswerCall Supported fullytF.

ctcAssign Supported as noted in Section D.4.

ctcAssociateData Not supported.

ctcCancelCall Not supported. For information about canceling calls, see
Section D.5.

ctcConferenceJoin Supported fullyf.

ctcConsultationCall Supported as noted in Section D.6.

ctcDeassign Supported fully.

ctcDeflectCall Not supported.

ctcErrMsg Supported fully.

ctcGetAgentStatus Not supported.

ctcGetCallForward Not supported.

ctcGetChannellnformation Supported as noted in Section D.7.

ctcGetDoNotDisturb Not supported.

ctcGetEvent Supported as noted in Section D.8.

ctcGetMessageWaiting Not supported.

ctcGetMonitor Supported fully.

ctcGetRouteQuery Supported as noted in Section D.9.

ctcGetRoutingEnable Not supported.

ctcHangupCall Supported fullytF.

ctcHoldCall Supported fullyf with Meridian switch software X11
Release 22 or later and Meridian Link software Release
5.0 or later.

ctcMakecCall Supported as noted in Section D.10.

tNot supported for channels assigned to 500 or 2500 sets.
fMeridian switches do not use call reference identifiers associated with this routine. For more
information, refer to Section D.3.2.

Features Specific to Nortel Meridian Switches D-3

Table D-2 CTC Routines and Meridian Switches (Continued)

Name of Routine Support
ctcMakePredictiveCall Not supported.
ctcPickupCall Not supported.

ctcReconnectHeld
ctcRemoveMonitor
ctcRespondTolnactiveCall
ctcRespondToRouteQuery

ctcRetrieveHeld

ctcSendDTMF
ctcSetAgentStatus
ctcSetCallForward
ctcSetDoNotDisturb
ctcSetMessageWaiting
ctcSetMonitor
ctcSetRoutingEnable
ctcSingleStepTransfer
ctcSnapshot
ctcSwapWithHeld
ctcTransferCall
ctcWinGetEvent
ctcWinGetRouteQuery

Supported fullyt.

Supported fully.

Not supported.

Supported as noted in Section D.11.

Supported with Meridian switch software X11 Release 22
or later and Meridian Link software Release 5.0 or later.

Not supported.

Supported as noted in Section D.12.
Supported as noted in Section D.13.
Supported fully.

Supported fully.

Supported fully.

Not supported.

Supported as noted in Section D.14.
Not supported.

Not supported.

Supported as noted in Section D.15.
Supported as noted in Section D.8.
Supported as noted in Section D.9.

tMeridian switches do not use call reference identifiers associated with this routine. For more

information, refer to Section D.3.2.

D.3 Using CTC With Meridian Switches

Sections D.3.1 to D.3.3 contain general information for writinga CTC

application that can be used with a Meridian switch.

D.3.1 Configuring the Meridian Switch

Before you can assign a channel to a voice set (terminal) or an ACD agent, the

D-4 Features Specific to Nortel Meridian Switches

switch administrator must configure your Meridian switch so that:

= Each voice set or position ID to which you want to assign is defined as an
associate set on the Meridian switch and configured for group 1 Meridian
Link Unsolicited Status Messages (USMs):

— For analog sets, use overlay program 10 (LD10) to set AST to YES and
IAPG to group 1

— For digital sets, use overlay program 11 (LD11) to set the AST to the
appropriate key number and IAPG to group 1

In addition, for position IDs, use overlay program 23 (LD23) to set ISAP to
YES.

= The security option is set on. Use overlay program 17 (LD17) to set the SECU
prompt to YES.

For more information about assigning channels, refer to Section D.4.

D.3.2 Call Reference ldentifiers

This section contains information about call reference identifiers supplied to, or
returned by, the Meridian switch.

callRefld, activeCallRefld, heldCallRefld Values

For the following routines, the Meridian switch does not use the value you
provide with the callRefld, activeCallRefld, or heldCallRefld arguments:

ctcAnswercCall
ctcConferencedoin
ctcConsultationCall
ctcHangupCall
ctcHoldCall
ctcReconnectHeld
ctcRetrieveHeld
ctcSingleStepTransfer
ctcTransferCall

However, to ensure that your application is compatible with other switches,
Dialogic recommends that you pass the reference identifier for the call as
returned by ctcGetEvent, ctcWinGetEvent, or ctcMakeCall.

If the Meridian is running X11 Release 18 or earlier of the Meridian switch
software, it returns the value zero as the callRefld for ctctMakeCall.

newCallRefld Values
The values returned by the Meridian switch for newCallRefld are dependent on

Features Specific to Nortel Meridian Switches D-5

the release of switch software and link software running on the switch:

= If the Meridian is running switch software X11 Release 18 or earlier, it
returns the value zero as the newCallRefld for the following routines:

ctconferenceJoin
ctcConsultationCall
ctcSingleStepTransfer
ctcTransferCall

= If the Meridian is running switch software X11 Release 19 or later and
Meridian Link software Release 4.0 or later, it returns one of the following for
newCallRefld:

— For ctcConferenceJoin and ctcTransferCall, the call reference generated
by the Meridian switch for the held call.

— For ctcConsultationCall, the call reference generated by the Meridian
switch for the new call.

— For ctcSingleStepTransfer (supported with Meridian switch software X11
Release 22 or later and Meridian Link software Release 5.0 or later), the
call reference generated by the Meridian for the original call.

D.3.3 Switch Overload

If you attempt to use a function (assign a channel or make a call, for example),
and the Meridian switch is too busy to respond to the request, CTC returns one
of the following errors:

« ctcSwitchOverlmm—Switch overload is imminent
« ctcSwitchOverRch—Switch overload has been reached

Your application should wait and then repeat the request.

D.4 ctcAssign

This section describes operating differences and points to note when you use
ctcAssign with a Meridian switch. For a full description of this routine, refer to

Chapter 2.

D-6 Features Specific to Nortel Meridian Switches

D.4.1 Supported Devices
You can assign a channel to the following devices:

For this device... Specify this deviceType value...

A voice set (terminal or telephone) ctcK_Dn

An ACD agent ctcK_Dn

An ACD group (ACD queue DN) ctcK_Dn

A route point (Controlled DN) ctcK_RoutePoint

A monitor channel ctcK_MonitorChannel

A voice channel ctcK_VoiceChannel (Meridian only)

Note that the device to which you assign must be a valid device. The value that
you specify for deviceDN is not verified.

Table D-3 shows the CTC routines supported for each type of device, including
Meridian-specific device types and routines.

Table D-3 Routines Supported for Meridian Devices

CTC Routine Voice Set Agent Group Route Monitor Voice
Point Channel Channel

ctcAddMonitor X

ctcAnswerCall X X

ctcAssign X X X X X

ctcConferenceJoin X X

ctcConsultationCall X X

ctcDeassign X X X X X X

ctcErrMsg X X X X X X

ctcGetChannellnformation X X X X X X

ctcGetEvent X X X X X X

ctcGetMonitor X X X X X

ctcGetRouteQuery X

ctcHangupcCall

ctcHoldCall

ctcMakeCall

Features Specific to Nortel Meridian Switches D-7

Table D-3 Routines Supported for Meridian Devices (Continued)

CTC Routine Voice Set Agent Group Route Monitor Voice
Point Channel Channel

ctcReconnectHeld X X

ctcRemoveMonitor X
ctcRespondToRouteQuery X
ctcRetrieveHeld
ctcSetAgentStatus
ctcSetCallForward
ctcSetDoNotDisturb
ctcSetMessageWaiting
ctcSetMonitor
ctcSingleStepTransfer

ctcTransferCall

X X X X X X X X X

X X X X

ctcWinGetEvent

ctcWinGetRouteQuery

Meridian-Specific Routines

ctcMIpCloseVoiceFile
ctcMlpCollectDigits

ctcMIpLogoffMailBox
ctcMIpLogonMailBox
ctcMIpOpenVoiceFile

X X X X X X

ctcMIpPlayMessage

Sections D.4.2 to D.4.6 provide more information about assigning to supported
devices.

D.4.2 Assigning to Voice Sets

To assign to a voice set (terminal), you specify its telephone number or extension
number. This is known as its DN (Directory Number). You must assign a channel
to a voice set if you want to use CTC to make outgoing calls. Channels assigned
to ACD agents cannot be used for outgoing calls.

Note that before you assign to a voice set, your switch administrator must
configure the switch. For more information, refer to Section D.3.1.

D-8 Features Specific to Nortel Meridian Switches

Standard Telephones (500 and 2500 Sets)

If you are using Meridian switch software X11 Release 17 or earlier, the
following routines are not supported for channels assigned to 500 or 2500 sets:

ctcConferenceJoin
ctcHangupCall
ctcTransferCall

D.4.3 Assigning to ACD Agents

You assign a channel to an ACD agent by specifying the agent’s position
identifier (position ID). The position ID uniquely identifies an agent in an ACD
group (ACD queue), and is defined by the switch administrator (see

Section D.3.1).

Note that when you assign a channel to an ACD agent:

= You cannot place outgoing calls from the agent (this is a restriction on the
Meridian switch).

However, this restriction can be avoided if the agent is using a multiline set.
You can assign two channels:

— A channel to the agent’s position ID. This automatically identifies a line
on the set that has been configured for the agent’s use.

— A channel to the DN of another line on the set (a line that has not been
configured as an agent’s position, also known as an Individual DN (IDN)).

The agent receives incoming calls and related status information on the line
associated with the position ID, and uses the channel assigned to the other
line to place outgoing calls.

= If you are monitoring the agent, the Meridian switch supplies call status
information on incoming calls.

D.4.4 Assigning to ACD Group Numbers

You assign a channel to an ACD group (also known as an ACD queue) by
specifying the ACD DN for the call queue, as defined by the switch
administrator.

D.4.5 Assigning to Route Points

If you want to use call routing, you must assign a channel to a route point. A
route point is a logical device associated with a Controlled DN (CDN). A CDN is
similar to an ACD queue but it has no agents. When a call enters the queue, the
ctcGetRouteQuery and ctcRespondToRouteQuery routines can be used to route

Features Specific to Nortel Meridian Switches D-9

the call.

Note that the Meridian switch administrator must configure the switch so that
the CDNs operate in controlled mode.

For channels assigned to route points, only the following events are supported:

ctcK_InboundcCall
ctcK_OpDisconnected

For more information about these events, refer to the description of ctcGetEvent
in Chapter 2.

D.4.6 Assigning to Voice Channels

Assigning to a voice channel enables you to use CTC routines to access voice
services from Meridian Mail. These are described in Section D.16.

To assign to a voice channel, specify:

= The value ctcK_VoiceChannel in the deviceType field of the ctcAssignData
structure.

= The voice channel class number (as defined by the switch administrator) in
the deviceDN field of the ctcAssignData structure.

e The value ctcK_MeridianLink in the APlextensions field of the
ctcAssignData structure. This enables you to access Meridian-specific
functions.

For more information about Meridian Mail, refer to your Meridian
documentation.

D.5 ctcCancelCall

This routine is not supported by Meridian switches. To cancel a consultation call
and retrieve the original call, you must use ctcReconnectHeld.

For example:

1. You use ctcConsultationCall to place a call to another party. The original call
is placed on consultation hold.

2. When there is no answer from the consultation party, you use
ctcReconnectHeld. This cancels the consultation call and returns you to the
original call.

D-10 Features Specific to Nortel Meridian Switches

D.6 ctcConsultationCall

This section describes operating differences and points to note when you use
ctcConsultationCall with a Meridian switch. For a full description of this
routine, refer to Chapter 2.

D.6.1 consultType Values

Meridian switches require you to specify the type of consultation call you are
making. Specify one of the following with the consultType argument:

e ctcK_ConsultTransfer for a transfer call
= ctcK_ConsultConference for a conference call

ctcK_ConsultGeneric is not supported.

D.6.2 callRefld and newCallRefld

The following table shows how the Meridian supports call references for the
callRefld and newCallRefld arguments:

For this argument... A Meridian switch...

callRefld Does not use the value you specify. However, for compatibility
with other switches, Dialogic recommends you pass the
reference identifer for the call as returned by ctcGetEvent,
ctcWinGetEvent, or ctcMakeCall.

newCallRefld Returns one of the following:

= |If the Meridian switch is running switch software X11
Release 18 or earlier, the value zero.

= |If the Meridian switch is running switch software X11
Release 19 or later, the call reference for the new call.

D.6.3 applicationData

Meridian switches do not support application data for a call. Pass the address of
a zero-length character string with the applicationData argument.

D.6.4 ctcBadObjState Returned for Initiating a Call Transfer

If the condition value ctcBadObjState is returned when you initiate a call
transfer with ctcConsultationCall, the original party (for example, the calling

Features Specific to Nortel Meridian Switches D-11

party) may have abandoned the call.

You must ensure that the call is cleared. Check CTC events:

= If the ctcK_Disconnected event is returned, the call has been cleared.
« If no call event is returned, use ctctHangupCall to clear the call.

Note that you may receive ctcBadObjState in response to this routine. This
indicates that the call has already been cleared but no ctcK_Disconnected
event was logged. A call event may not be returned if, for example, the call is
external.

D.7 ctcGetChannelinformation

This section describes operating differences and points to note when you use
ctcGetChannellnformation with Meridian switches. For a full description of this
routine, refer to Chapter 2.

D.7.1 Line Type Values
Meridian switches can return the following lineType values:

ctcK_LineRoutePoint
ctcK_LineVoiceSet
ctcK_LineVRU

Note that:

= ctcK_LineVoiceSet is returned for channels assigned to a telephony device,
(telephones or terminals, ACD groups, ACD agents, or VRUS).

e ctcK_LineVRU is returned if the channel is assigned to a voice channel only
(see Section D.4.6).

e ctcK_LineDataSet and ctcK_LineTrunk are not supported.

D.7.2 Prime Values

Meridian switches do not return information in the prime field of the
ctcChanData structure.

D.7.3 Set Type Values

Meridian switches do not return information in the setType field of the
ctcChanData structure.

D.7.4 Switch-Specific Support
If you are using switch-specific routines provided by CTC for Meridian switches

D-12 Features Specific to Nortel Meridian Switches

(see Section D.16) for a channel assigned to a voice channel, the following values
can be returned in the switchSpecificSupport field of the ctcChanData structure:

ctcM_MlIpCloseVoiceFile
ctcM_MlIpCollectDigits
ctcM_MlpLogoffMailBox
ctcM_MlpLogonMailBox
ctcM_MIpOpenVoiceFile
ctcM_MlpPlayMessage

D.8 ctcGetEvent and ctcWinGetEvent

This section describes operating differences and points to note when you use
ctcGetEvent or ctcWinGetEvent with a Meridian switch. For full descriptions of
these routines, refer to Chapter 2.

D.8.1 Fields Used in the ctcEventData Structure

Table D-4 shows which fields in the ctcEventData structure are supported by
Meridian switches. If a field is Not supported, CTC always returns null data for
that field.

Table D-4 Event Information Supported by Meridian Switches

Field Support

refld See Section D.8.2.

netCallld As described in Chapter 2.
oldRefld As described in Chapter 2.
oldNetCallld As described in Chapter 2.
state See Section D.8.3.

event See Sections D.8.4, D.8.5, D.8.6, D.8.7, D.8.8, and D.8.9.
eventQualifier See Section D.8.10.

type See Section D.8.11.
otherPartyType As described in Chapter 2.
otherPartyQualifier Not supported.

otherParty See Sections D.8.12 and D.8.17.
otherPartyTrunk As described in Chapter 2.
otherPartyGroup As described in Chapter 2.

Features Specific to Nortel Meridian Switches D-13

Table D-4 Event Information Supported by Meridian Switches (Continued)

Field

Support

thirdPartyType
thirdPartyQualifier
thirdParty
thirdPartyTrunk
thirdPartyGroup
calledPartyType
calledPartyQualifier
calledParty
calledPartyTrunk
calledPartyGroup
applicationData
monitorParty
nestedMonitorChannel
agentMode

agentld

agentGroup

agentData
logicalAgent
dtmfDigits
originatingPartyType
originatingPartyQualifier
originatingParty
originatingPartyTrunk
originatingPartyGroup
secOldRefld
callsQueued

accountinfo

As described in Chapter 2.
Not supported.

See Sections D.8.12 and D.8.17.
As described in Chapter 2.
As described in Chapter 2.
As described in Chapter 2.
Not supported.

See Sections D.8.12 and D.8.17.
As described in Chapter 2.
As described in Chapter 2.
Not supported.

As described in Chapter 2.
As described in Chapter 2.
See Section D.8.13.

Not supported.

As described in Chapter 2.
Not supported.

Not supported.

See Section D.8.14.

See Section D.8.15.

Not supported.

See Section D.8.15.

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

D-14 Features Specific to Nortel Meridian Switches

D.8.2

D.8.3

D.8.4

D.8.5

D.8.6

D.8.7

Table D-4 Event Information Supported by Meridian Switches (Continued)

Field Support
timeStamp See Section D.8.16.
privateData Not supported.

Call Reference Identifiers Returned for Events

If you are running Meridian switch software X11 Release 16 through X11
Release 18, the reference identifier for a call may not be the same for all events,
that is, it cannot be predicted accurately.

Call States
The state transition for an incoming call is as follows:
Null - Receive - Initiate —» Active - Null

Note that in this transition, the call is answered after the Receive state. When it
is answered, the state of the call is Initiate followed by Active, and when the call
is hung up, the state is Null.

Group Events
If you are monitoring a channel assigned to an ACD queue, the only event
returned is ctcK_OpDisconnected (the caller has hung up before the call was
answered).

Route Point Events

If you are monitoring a channel assigned to a route point, the only events
returned are:

ctcK_InboundCall (Queued state)
ctcK_OpDisconnected

Agent Events
The Meridian supports the ctcK_AgentModeChange event.

For switches supporting X11 Release 22 or later and Meridian Link Release 5.0
or later, the following additional agent events are supported:

ctcK_AgentLoggedOn
ctcK_AgentLoggedOff

Call Events Not Supported
The following call events are not supported by Meridian switches:

Features Specific to Nortel Meridian Switches D-15

ctcK_DestNotObtainable
ctcK_Diverted
ctcK_OffhookPrompt
ctcK_OpRetrieved
ctcK_Unavailable

The following call events are supported only if the Meridian switch is running

X11 Release 22 or later:

ctcK_OpHeld
ctcK_OpConferenced
ctcK_TpSuspended
ctcK_Transferred

D.8.8 Switch-Specific Call Events

If you are using switch-specific routines provided by CTC for Meridian switches
(see Section D.16), the following additional call events can be returned:

ctcK_MlpDigitsCollected
ctcK_MIpEndOfPlay

See the descriptions of the ctcMIpCollectDigits routine and ctcMIpPlayMessage

routine for more information.

D.8.9 Call Events and States

Table D-5 shows the device states that can be returned for each call event.

Table D=5 Call Events and States Returned

Event Description States
ctcK_DestBusy The dialed destination is busy. Fail
ctcK_DestChanged The call from the assigned device Deliver
was redirected to another
destination.
ctcK_Destlnvalid The attempted call has failed. Fail
ctcK_DestSeized A call has been successfully dialed. Deliver

If this call is external to the ACD,
the network number has been
verified and the outbound trunk
seized. This does not indicate that
the other end is actually ringing or
answered.

D-16 Features Specific to Nortel Meridian Switches

Table D-5 Call Events and States Returned (Continued)

Event Description States
ctcK_Error The call has failed for an Fail
unspecified reason.
ctcK_InboundcCall A new call has arrived at the Receive or
assigned device prior to routing. Queued
ctcK_Offhook A new call has been made from the Initiate
assigned device.
ctcK_OpAnswered The other party has answered the Active or
call from the assigned device. Queued
ctcK_OpDisconnected Either the other party hung up Active
before the call was answered, or, for Null
switches supporting Meridian
switch software X11 Release 22 or
later and Meridian Link software
Release 5.0 or later, the other party
in a conference call hung up.
ctcK_Other An event has occurred during the Deliver or
call (see Section D.8.10). Active
Unknown
ctcK_TpAnswered A call has been connected to this Active
party.
ctcK_TpConferenced This party has been connected in a Active
conference call.
ctcK_TpDisconnected A call has been disconnected from Null
this party possibly because it has
been transferred.
ctcK_TpRetrieved The held call has been retrieved by Active

this party.

D.8.10 Call Event Qualifiers

This section describes Meridian switch qualifiers for call events. Call events
occur during the progress of a call and, along with call states, indicate the
success or failure of calls on the monitored device. The qualifier can sometimes
provide more information on the nature of the event.

CTC returns information about call events in the ctcEventData structure

Features Specific to Nortel Meridian Switches D-17

returned by the ctcGetEvent or ctcWinGetEvent routine. Meridian switches
supply more detailed information on events, and CTC returns this additional
information in the eventQualifier field of the structure.

To determine which event qualifier has been returned, compare the value in the
eventQualifier field with the literals listed as ctcK_MIp... in Table D-6. These
literals define the possible qualifiers returned by a Meridian switch and are
supplied in a CTC definitions file installed on your system (see Section 1.5).

Table D-6 Call Event Qualifiers for Meridian Switches

Qualifier Name

Description

ctcK_MlIpAcdQueued
ctcK_MlIpAcdRinging
ctcK_MlIpAttendQueued
ctcK_MlpCallAbandont
ctcK_MlpCallForward
ctcK_MlpCallForwardBusy

ctcK_MlpCallForwardDnDt

ctcK_MlpCallForwardNoAnswer

ctcK_MlpCallPickupt

ctcK_MlIpConfComplete
ctcK_MlIpConAck
ctcK_MIpCOSNotConfig
ctcK_MlpDigitCollectSuccess
ctcK_MlpDirect
ctcK_MlpFastTransferDone
ctcK_MlplInterDigitTimeout
ctcK_MlplnvCustNumber
ctcK_MlplnvDTMFString

Call is queued

ACD queue found and is ringing

Call is queued

Calling party has disconnected

Incoming call is forwarded from another destination

Incoming call is forwarded because the original
destination is busy

Incoming call is forwarded because the original
destination has set Do-Not-Disturb

Incoming call is forwarded because the original
destination did not answer

Incoming call is picked up but the other party has
disconnected

Conference joined

CON message acknowledged

Transfer Class Of Service (COS) not configured
DTMF digits have been collected successfully
Direct incoming call

Fast transfer completed successfully

Inter digit timeout received

Invalid customer number

Invalid DTMF string received

tSupported by Meridian Link software Release 4.0 or later.

D-18 Features Specific to Nortel Meridian Switches

Table D-6 Call Event Qualifiers for Meridian Switches (Continued)

Qualifier Name

Description

ctcK_MlplnvOpDn
ctcK_MlplnvOpManner
ctcK_MlplnvOpTn
ctcK_MlplnvTpDn
ctcK_MlplnvTpManner
ctcK_MlplnvTpTn
ctcK_MlplnvTpUserType
ctcK_MlpKeyBufferOverflow
ctcK_MlIpMultAppearanceDn
ctcK_MIpOffNightServicet

ctcK_MIpOpAnswered
ctcK_MlIpOpBadState
ctcK_MlIpOpBlocking
ctcK_MIpOpBusy
ctcK_MIpOpRinging
ctcK_MlIpOpTransferredCall
ctcK_MlpQueued
ctcK_MlIpReadyState
ctcK_MlIpRetrieveComplete
ctcK_MlpSetInConfCall
ctcK_MlpSignalling
ctcK_MlIpSystemError
ctcK_MIpTpAccessRestrict
ctcK_MlIpTpBlocking
ctcK_MlIpTpBusy
ctcK_MlIpTpDisconnect

Invalid called DN

Invalid terminating manner
Invalid called TN

Invalid calling DN

Invalid originating manner
Invalid calling TN

Invalid calling user type
Key buffer overflow occurred

DN appears on more than one set

The attendant goes off night service while the night

service DN is ringing

Called party has answered
Called party is in a bad state
Called party is blocked

Called party is busy

Called party is ringing

Called party transferred call
Call is queued

Calling party’s phone is ready
Return to original call complete
Set active in conference call
Calling party is receiving end-to-end signaling
System error

Access restriction

Calling party is blocking
Calling party is busy

Calling party is disconnected

tSupported by Meridian Link software Release 4.0 or later.

Features Specific to Nortel Meridian Switches D-19

Table D-6 Call Event Qualifiers for Meridian Switches (Continued)

Qualifier Name

Description

ctcK_MlpTplnuse
ctcK_MlIpTplnvokedHold
ctcK_MlpTpMaintenance
ctcK_MlIpTpOnhook
ctcK_MlpTpPermHold
ctcK_MIpTpRinging
ctcK_MlpTpUnableToAnswer
ctcK_MlIpTpUnableToDisconnect
ctcK_MlpTpUnableToPutOnHold
ctcK_MlpTransferKeyNotConfig

Calling party DN is in use
Calling party invoked hold

Calling party set maintenance is busy

Calling party is on-hook
Calling party is on permanent hold
Incoming call on calling party set
Cannot answer incoming call
Cannot disconnect calling party
Cannot put call on hold

Transfer key not configured

ctcK_MlpTransferKeyNotldle
ctcK_MlIpTrunkSeized

Transfer key not idle
Calling trunk seized
ctcK_MlpUnableCompConf
ctcK_MlpUnableCompFT

Unable to complete conference

Unable to complete fast transfer
ctcK_MlpUnableCompRetr Unable to complete retrieve
ctcK_MlpUnableCompXfer

ctcK_MlpUnablelnitFT

Unable to complete transfer

Unable to initiate fast transfer
ctcK_MlpUnablelnitXfer Unable to initiate transfer
ctcK_MlpUnknown Unknown event

ctcK_MlpXferComplete Call successfully transferred

D.8.11 Call Types
The Meridian supports the following call types to an ACD agent:

For an incoming call... For an incoming call that rings off...

ctcK_MlpcCallForward
ctcK_MlpCallForwardBusy
ctcK_MlpCallForwardDnD
ctcK_MlpDirect

ctcK_MlpCallAbandon
ctcK_MlpCallForwardNoAnswer
ctcK_MlpCallPickup
ctcK_MIpOffNightService

D-20 Features Specific to Nortel Meridian Switches

D.8.12 Other, Third, and Called Party Information

For a Meridian switch, two separate party items can be returned in the same
field of the ctcEventData structure. These items are separated by the character
/.

For example, if you call an ACD agent from the assigned device and the agent
answers (ctcK_OpAnswered), the otherParty field of the ctcEventData structure
can contain both the DN for the ACD queue and a position ID for the ACD agent.
If 3776 is the DN for the ACD queue and 7892 is the position ID for the ACD
agent on that queue, the otherParty field will contain 3776/7892. The / character
is used to separate these items.

Other, Called, and Third Parties

CTC supports the Calling Line ID (CLID) feature supplied by Meridian
switches. CLID information is returned in the otherParty and thirdParty fields
of the ctcEventData structure.

A Meridian switch passes the information over the CTC link only if:

1. The DNIS software package and the appropriate ISDN cards are installed on
the switch.

2. There is an ISDN trunk connecting the switch to the Central Office.

3. The switch is configured correctly (see the switch administrator).

D.8.13 Agent Modes
This section provides information about data returned in the agentMode field.

ctcK_AgentinService

The Meridian supports an additional value, ctcK_AgentInService, that can be
returned in the agentMode field. This value is returned when an agent becomes
available after being unable to receive calls because of being involved in other
work (agent mode ctcK_AgentOtherWork).

Switch Software Release

The agent mode values supported by a Meridian are dependent on the release of
Meridian switch software running on the switch:

Value Release of Meridian Switch Software Required
ctcK_AgentInService X11 Release 19 or later
ctcK_AgentOtherWork X11 Release 19 or later

Features Specific to Nortel Meridian Switches D-21

Value Release of Meridian Switch Software Required

ctcK_AgentLogin X11 Release 22 or later
ctcK_AgentLogout X11 Release 22 or later
ctcK_AgentReady X11 Release 22 or later
ctcK_AgentNotReady X11 Release 22 or later

Work Modes for Devices

The value returned in the agentMode field may not always reflect the work mode
for the agent. Instead, it can return the mode for the device (for example,
telephone set) that the agent is using. For example, ctcK_AgentInService may be
returned when the agent has logged out. This is because the DN associated with
the agent’s telephone set is still in service.

D.8.14 DTMF Digits

Meridian switches return information in the dtmfDigits field only if the
application uses CTC API extensions for the Meridian (see Section D.16) and the
channel is assigned to a voice channel.

Any DTMF digits entered by the other party are returned in this field. For more
information, refer to the description of the ctcMIpCollectDigits routine in this
appendix.

D.8.15 Originating Party Information
Meridian switches can use the following Originating Party fields:

Field Description
originatingPartyType The Meridian supports the value ctcK_Dn only.
originatingParty This field contains a treatment number, if available.

The maximum length for the treatment number is
specified by the literal ctcMaxDnLen in a CTC definitions
file (see Section 1.5). Note that this maximum length
includes the null termination character (NUL).

D.8.16 Time Stamp

If the link is configured to return a time stamp from the switch and not the CTC
server, the switch can return information. However, the following conditions

apply:
= The Meridian switch must be running Meridian switch software X11 Release

D-22 Features Specific to Nortel Meridian Switches

22 or later and Meridian Link software release 5.0 or later.

The Meridian switch can provide information in the following ctcTimeStamp
fields only:

hour
minute
second

Time stamp information may not be provided for all events.

To ensure that time stamp information is returned for each CTC event,
Dialogic recommends that you configure the link to return time stamp
information generated by the CTC server. For more information, refer to the

CT-Connect Installation and Administration Guide.

D.8.17 Party Information and Events

Table D-7 shows the party information specific to Meridian call events.

Table D—-7 Meridian Party Information for Call Events

Event Field

Party Information Explanation

ctcK_DestBusy

Other Busy Party or Called
Numbert

Third Null

Called Null

ctcK_DestChanged

Other Ringing Party or Called
Numbert

Third Null

Called Null

ctcK_Destlnvalid

Other Invalid Destination
Number or Called
Numbert

Third Null

Called Null

tIf a call is forwarded to a nonagent, the called number is provided in the other party field.

Features Specific to Nortel Meridian Switches D-23

Table D-7 Meridian Party Information for Call Events (Continued)

Event Field

Party Information

Explanation

ctcK_DestSeized

Other Ringing Party or Called
Numbert
Third Null
Called Null
ctcK_Error
Other Null
Third Null
Called Null
ctcK_InboundcCall
Other Calling Party
Third Transferred or Last If the channel is assigned to an
Redirected ACD agent and the call was
ACD DN if available forwarded, the last station called
before redirection.
Called Called Number if
available or DNIS if
available
ctcK_Offhook
Other Null
Third Null
Called Null

ctcK_OpAnswered

Other
Third
Called

Answering Party
Null
Null

tIf a call is forwarded to a nonagent, the called number is provided in the other party field.

D-24 Features Specific to Nortel Meridian Switches

Table D-7 Meridian Party Information for Call Events (Continued)

Event Field Party Information Explanation
ctcK_OpDisconnected
Other Calling Party For a conference call, the
remaining party in the call.
Third Null
Called Called Number
ctcK_Other
Other Null
Third Null
Called Null

ctcK_TpAnswered

Other Party at Other End of
Call

Third Null

Called Null
ctcK_TpConferenced

Other Null

Third Null

Called Null
ctcK_TpDisconnected

Other Null

Third Null

Called Null

ctcK_TpRetrieved

Other
Third
Called

Retrieved party
Null
Null

This table gives only Meridian party information. For other switch-specific
information, refer to the appendix for your switch (for example, Appendix C for
the DEFINITY). For a description of each event (such as ctcK_DestBusy), see

Features Specific to Nortel Meridian Switches D-25

Table 2-5.

D.9 ctcGetRouteQuery and ctcWinGetRouteQuery

This section describes operating differences and points to note when you use
ctcGetRouteQuery or ctcWinGetRouteQuery with Meridian switches. For full
descriptions of these routines, refer to Chapter 2.

D.9.1 Fields Used in the ctcRouteData Structure

Table D-8 shows which fields in the ctcRouteData structure are used by
Meridian switches. If Table D—8 shows that a field is Not supported, CTC always
returns null data for that field.

Table D-8 Route Information Supported by Meridian Switches

Field Support

routeld As described in Chapter 2
refld As described in Chapter 2
spare001 Not supported
otherPartyType As described in Chapter 2
otherParty As described in Chapter 2
otherPartyTrunk As described in Chapter 2
otherPartyGroup As described in Chapter 2
thirdPartyType Not supported

thirdParty Not supported
thirdPartyTrunk Not supported
thirdPartyGroup Not supported
calledPartyType Not supported
calledParty As described in Chapter 2
calledPartyTrunk Not supported
calledPartyGroup As described in Chapter 2
applicationData Not supported

dtmfDigits Not supported
timeStamp As described in Section D.9.2

D-26 Features Specific to Nortel Meridian Switches

Table D-8 Route Information Supported by Meridian Switches (Continued)

Field Support

privateData Not supported

D.9.2 Time Stamp

If the link is configured to return a time stamp from the CTC server, the
timeStamp field contains the data and time the CTC server received the route
request. For more information, refer to the description of this field in Chapter 2.

Meridian switches do not support time stamp information for channels assigned
to route points. If the link is configured to return a time stamp from a Meridian
switch, this field contains null data.

For more information about changing the configuration of a link, refer to the
CT-Connect Installation and Administration Guide for your CTC server
platform.

D.10 ctcMakecCall

This section describes operating differences and points to note when you use
ctcMakeCall with Meridian switches. For a full description of this routine, refer
to Chapter 2.

D.10.1 Application Data

Meridian switches do not support application data for a call. Pass the address of
a zero-length character string with the applicationData argument.

D.10.2 Call Reference Identifier

If a Meridian switch is running X11 Release 18 or earlier of the Meridian switch
software, the value zero is returned as the reference identifier for the call. For
more information, refer to the description of the ctctMakeCall callRefld
argument in Chapter 2.

D.11 ctcRespondToRouteQuery

This section describes operating differences and points to note when you use
ctcRespondToRouteQuery with Meridian switches. For a full description of this
routine, refer to Chapter 2.

D.11.1 Responding to Route Queries
Meridian switches require that your application responds to a call within four

Features Specific to Nortel Meridian Switches D-27

seconds either by providing a new route or by providing a treatment, such as
music (see Section D.11.2).

If you do not respond within that time, the Meridian provides the default call
treatment (as defined on the Meridian switch).

Note that if the Meridian provides default call treatment for 10 or more calls, it
no longer allows your application control of the assigned route point. To
maintain control of the assigned route point, do not specify the address of a
zero-length character string with the newCalledNumber argument more than 10
times.

D.11.2 Delayed Routing

If your application does not want to reroute the call immediately, or does not
know where to route the call at that time, it can continue to control the call by
providing music, ringback, or silence.

Use the newCalledNumber argument to specify the address of a null-terminated
character string that contains one of the following:

= #HtM#nn for music, where nn is a route number (in hexadecimal) that
identifies the music source (see your Meridian administrator for more
information)

= ##R for ringback
= ##S for silence

Restriction
Meridian switches do not accept silence (##S) as the first treatment. Use
ctcRespondToRouteQuery to delay routing with music or ringing, then call
ctcRespondToRouteQuery again to continue the delay with silence.

D.11.3 Application Data

Meridian switches does not support application data for a call. Pass the address
of a zero-length character string with the applicationData argument.

D.12 ctcSetAgentStatus

This section describes operating differences and points to note when you use
ctcSetAgentStatus with Meridian switches. For a full description of this routine,
refer to Chapter 2.

D-28 Features Specific to Nortel Meridian Switches

D.12.1 agentMode

The Meridian supports the following agentMode values:

This value...

Specifies that...

ctcK_AgentLogin
ctcK_AgentLogout
ctcK_AgentReady
ctcK_AgentNotReady

ctcK_Mlp_AgentNotReady ACD

ctcK_Mlp_AgentNotReady IDN

ctcK_Mlp_AgentNotReady Both

The agent is logging in.
The agent is logging out.
The agent is ready to receive calls.

If the agent is engaged in a call, the Meridian
disconnects the call and no further calls are presented
to the agent (agent state is not ready).

If the agent is engaged in an ACD call, no further calls
are presented to the agent (agent state is not ready)
but the Meridian does not disconnect the call.

If the agent is engaged in an Internal DN (IDN) call,
no further calls are presented to the agent (agent
state is not ready) but the Meridian does not
disconnect the call.

If the agent is engaged in a call, no further calls are
present to the agent (agent state is not ready) but the
Meridian does not disconnect the call.

If you specify an unsupported agentMode, CTC returns a ctcOptNotSup error.

D.12.2 agentData and logicalAgent

When you log in an agent (ctcK_AgentLogin), the data you specify with
agentData and logicalAgent is dependent on the configuration of the Meridian

switch.

If the Meridian administrator has configured agent identifiers (IDs) on the

switch:

For this argument... Specify...

agentData The agent ID. This is an identifier of up to 4 digits defined by
the switch administrator. The identifier must be unique on
the switch.

logicalAgent The address of a zero-length character string.

Features Specific to Nortel Meridian Switches D-29

If agent IDs are not configured on the Meridian:

For this argument... Specify...
agentData The address of a zero-length character string.
logicalAgent The address of a zero-length character string.

D.13 ctcSetCallForward

This section describes operating differences and points to note when you use
ctcSetCallForward for Meridian switches. For a full description of this routine,
refer to Chapter 2.

D.13.1 forwardMode

The only value that the Meridian supports for the forwardMode argument is
ctcK_CfAll.

D.14 ctcSingleStepTransfer

This section describes the operating differences and points to note when you use
ctcSingleStepTransfer with Meridian switches. For a full description of this
routine, refer to Chapter 2.

D.14.1 Switch Software Required
ctcSingleStepTransfer is supported on Meridian switches running:

e X11 Release 21 or later of the Meridian switch software

e Release 5.0 or later of the Meridian Link software

D.14.2 callRefld

Meridian switches do not use the call reference identifier specified with the
callRefld argument. However, to ensure that your application is compatible with
other switches, Dialogic recommends that you pass the reference identifier for
the call as returned by ctcGetEvent, ctcWinGetEvent, or ctcMakeCall.

D.14.3 newCallRefld

For the newCallRefld argument, Meridian switches return the call reference for
the original call.

D-30 Features Specific to Nortel Meridian Switches

D.14.4 Supported Devices
ctcSingleStepTransfer is supported for channels assigned to:

= DNs (for example, voice sets, ACD agents, or ACD groups)
= \oice channels

It is not supported for channels assigned to route points or monitor channels.

D.14.5 applicationData

Meridian switches do not support application data for a call. Pass the address of
a zero-length character string with the applicationData argument.

D.15 ctcTransferCall

This section describes operating differences and points to note when you use
ctcTransferCall with Meridian switches. For a full description of this routine,
refer to Chapter 2.

D.15.1 500 and 2500 Sets
If you are using Meridian switch software X11 Release 17 or earlier, this routine
is not supported for channels assigned to 500 or 2500 sets.

D.15.2 activeCallRefld

Meridian switches do not use the call reference identifier specified with the
activeCallRefld argument.

However, to ensure that your application is compatible with other switches,
Dialogic recommends that you pass the reference identifier for the call as
returned by ctcGetEvent, ctcWinGetEvent, or ctcMakeCall.

D.15.3 heldCallRefld

Meridian switches do not use the call reference identifier specified with the
heldCallRefld argument.

However, to ensure that your application is compatible with other switches,
Dialogic recommends that you pass the reference identifier for the call as
returned by ctcGetEvent, ctcWinGetEvent, or ctcMakeCall.

D.15.4 newCallRefld
Meridian switches do not return a new call reference for the transferred call:

= If the Meridian switch is running switch software X11 Release 18 or earlier, it
returns the value zero as the newCallRefld.

Features Specific to Nortel Meridian Switches D-31

= If you are using Meridian switch software X11 Release 19 or later and
Meridian Link software Release 4.0 or later, it returns the latest reference
identifier for the held call as returned by ctcGetEvent, ctcWinGetEvent, or
ctcMakecCall.

D.15.5 ctcBadObjState Returned for Call Transfer

If you complete a call transfer with ctcTransferCall and the condition value
ctcBadObjState is returned, either the calling party or the destination party has
abandoned the call. Use ctcReconnectHeld to reconnect to the remaining party:

= If the calling party is connected, the destination party has hung up. You can
either use ctcConsultationCall to try to call the destination party again, or
abandon the consultation call.

= If the condition value ctcBadObjState is returned for the call to
ctcReconnectHeld, the calling party has hung up. Use ctcHangupCall to clear
the call.

D.16 CTC Routines for Meridian Switches

The following pages describe Meridian-specific CTC routines that are provided
as an extension to the standard CTC API. These routines are for CTC
applications that will only be used with a Meridian switch.

To use these Meridian-specific CTC routines:

= Your Meridian switch must be configured to support both CTC and Meridian
Mail. The Meridian switch requires the following:

— Meridian switch software X11 Release 19 or later.

— Meridian Link software Release 3.0 or later with Host-Enhanced Voice
Processing (service 101).

= The channel must be assigned to a voice channel (see Section D.4.6).

= When you use ctcAssign to assign the channel, you must specify the value
ctcK_MeridianLink in the APlextensions field of the ctcAssignData
structure. If you do not specify this value, you will not be able to use these
routines for the assigned voice channel. Refer to the description of ctcAssign
in Chapter 2 for more information.

D-32 Features Specific to Nortel Meridian Switches

ctcMIpCloseVoiceFile

ctcMIpCloseVoiceFile
Close a Voice File

Formatin C

unsigned int ctcMIpCloseVoiceFile (ctcChanld channel,
unsigned int fileld)

Description

This routine closes an open voice file on the Meridian Mail system. Use this
routine when the call on the voice channel has ended. That is, when the caller
has hung up or been transferred to an agent.

For details of how to open a voice file on the Meridian Mail system, refer to the
description of the ctcMIpOpenVoiceFile routine in this appendix.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the voice channel in use.

The ctcChanld datatype is defined in a CTC definitions file (see Section 1.5).

fileld
type: integer (unsigned)
access: read only

mechanism: by value

This 32-bit integer contains the file identifier for the file you are closing. Specify
the identifier returned by the ctcMIpOpenVoiceFile routine for the file you want
to close.

Features Specific to Nortel Meridian Switches D-33

ctcMIpCollectDigits

ctcMIpCollectDigits
Collect DTMF Digits

Format in C
unsigned int ctcMlp CollectDigits (ctcChanld channel,
unsigned int numberOfDigits,
unsigned int clearMode,
unsigned int interDigTimeout,
ctcMipTermKeys termKeys)
Description

This routine enables you to collect DTMF digits entered by a caller. These digits
are entered when the caller presses keys on a touch-tone phone, for example, to
respond to a message played by ctcMIpPlayMessage.

You must call ctcGetEvent (or ctcWinGetEvent on Windows 3.1/3.11 systems)
before you use this routine. For example, call:

1. ctcGetEvent to return events for the voice channel

2. ctcMlIpCollectDigits to instruct the Meridian switch to send any DTMF digits
that a caller enters

Note that you use ctcMIpCollectDigits before a caller enters the digits. When
they have finished entering digits, a ctcK_MlIpDigitsCollected event is returned
and the dtmfDigits field of the ctcEventData structure contains the collected
digits.

Your application can associate the DTMF digits with specific data, for example,
account data or the DN for a destination agent or group. To transfer the caller,
use the ctcSingleStepTransfer routine.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the voice channel in use.

The ctcChanld datatype is defined in a CTC definitions file (see Section 1.5).

D-34 Features Specific to Nortel Meridian Switches

ctcMIpCollectDigits

numberOfDigits

type: integer (unsigned)
access: read only
mechanism: by value

This 32-bit integer specifies the number of digits to be collected.

This can be used to check the caller’s response to the Meridian Mail message.
For example, if the specified number of digits are not collected, your application
can play another message that prompts the caller to enter further digits.

If you do not want to set the number of expected digits, pass the value zero with
this argument.

clearMode
type: integer unsigned
access: read only

mechanism: by value

This 32-bit integer indicates whether the key buffer is cleared. The key buffer
contains the DTMF digits entered by the caller.

Specify one of the following values:

Value Description
ctcK_MlIpClearOn Specifies that the key buffer is cleared.
ctcK_MlpClearOff Specifies that the key buffer is not cleared.

interDigTimeout

type: integer (unsigned)

access: read only

mechanism: by value

This 32-bit integer specifies the time (in seconds) between each digit entered.

If the caller does not enter a digit within the specified time, CTC returns a
ctcK_MlIpDigitsCollected event (state failed) with the qualifier,
ctcK_MlIpTimeout.

If you do not want to set the time between digits, pass the value zero with this
argument.

Features Specific to Nortel Meridian Switches D-35

ctcMIpCollectDigits

termKeys
type: ctcMIpTermKeys
access: read only

mechanism: by reference

This argument is the address of a character string that contains one or more
digits used to indicate the end of dialing. The caller presses this key (for
example, the key) when they have finished dialing.

The ASCII string can contain any combination of numbers 0 through 9 and the
characters * and #. The maximum length for termKeys is specified by the literal
ctcMIpMaxKeysLen in a CTC definitions file. Note that this maximum length
includes the null termination character (NUL).

If you do not want to specify a termination key, pass the address of a zero-length
character string.

D-36 Features Specific to Nortel Meridian Switches

ctcMIpLogoffMailBox

ctcMIpLogoffMailBox
Log Off a Meridian Mail Account

Format in C
unsigned int ctcMIpLogoffMailBox (ctcChanld channel)

Description

Use this routine when you no longer need to access Meridian Mail features for
the assigned voice channel. This routine logs off the voice channel from the
Meridian Mail system.

For more information about logging on to a Meridian Mail system, see the
description of the ctcMIpLogonMailBox routine in this appendix.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the voice channel in use.

Features Specific to Nortel Meridian Switches D-37

ctcMlpLogonMailBox

ctcMIpLogonMailBox
Log On to a Meridian Mail Account

Format in C
unsigned int ctcMIpLogonMailBox (ctcChanld channel,
ctcMipUserld userld,
ctcMipPassword password)
Description

This routine enables you to log on to a Meridian Mail account and access
Meridian Mail features from the assigned voice channel. For example, if the
switch receives an incoming call for the voice channel, your application can
respond by playing a voice file on the Meridian Mail system. A voice file can
present the caller with a menu of options and prompt them to respond by
pressing telephone keys.

When you use ctcMIpLogonMailBox to log on to a Meridian Mail account, the
voice channel is registered as the Meridian Mail account user.

Before you use Meridian Mail features, you must use the following sequence of
routines:

1. ctcAssign to assign a channel to a voice channel

2. ctcSetMonitor to set monitoring on for the voice channel

3. ctcGetEvent so that events are returned for the voice channel
4. ctcMlIpLogonMailBox to log on to a Meridian Mail account

When you have finished using Meridian Mail voice services, use
ctcMlIpLogoffMailBox.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the voice channel in use.

D-38 Features Specific to Nortel Meridian Switches

ctcMIpLogonMailBox

userld
type: ctcMlpUserld
access: read only

mechanism: by value

This character string contains the DN for the Meridian Mail system as defined
on the switch.

The maximum length for userld is specified by the literal ctcMIpUserldLen in a
CTC definitions file. Note that this maximum length includes the null
termination character (NUL).

password
type: ctcMlpPassword
access: read only

mechanism: by value

This character string contains the password for access to the Meridian Mail
system.

The maximum length for password is specified by the literal
ctcMlIpPasswordLen in a CTC definitions file. Note that this maximum length
includes the null termination character (NUL).

Features Specific to Nortel Meridian Switches D-39

ctcMIpOpenVoiceFile

ctcMIpOpenVoiceFile
Open a Voice File

Format in C
unsigned int ctcMIpOpenVoiceFile (ctcChanld channel,
ctcMipFileName fileName,
unsigned int *fileld)
Description

This routine opens a voice file on the Meridian Mail system. A voice file contains
one or more message segments that can be played to callers.

You must always use this routine before ctcMIpPlayMessage so that you can
identify which voice file is played. For example, your application might use the
following sequence of routines:

1. ctcMIpOpenVoiceFile to open a file that contains voice segments used for a
response message.

2. ctcMlIpPlayMessage to play the message.

3. ctcMlIpCollectDigits to collect input from the caller. For example, the caller
presses telephone keys (sends DTMF digits) to enter an account number.
When the caller has finished, the ctcK_MlIpDigitsCollected event is returned
and the dtmfDigits field of the ctcEventData structure contains the collected
digits.

Your application associates the DTMF digits returned in the dtmfDigits field
with the DN for a destination agent or group. You can then specify this DN
with the calledNumber argument for ctcSingleStepTransfer.

4. ctcSingleStepTransfer to transfer the caller to the appropriate agent or
group.

5. ctcMlIpCloseVoiceFile to close the file.

When the call has ended, you must always use ctcMIpCloseVoiceFile to close the
voice file.

Note that CTC enables you to play voice files only. You cannot use CTC to write
to a voice file.

D-40 Features Specific to Nortel Meridian Switches

ctcMIpOpenVoiceFile

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the voice channel.

fileName
type: ctcMlIpFileName
access: read only

mechanism: by value

This character string contains the name of the voice file on the Meridian Mail
system.

The ASCII string can contain any combination of numbers 0 through 9 and the
characters * and #. The maximum length for fileName is specified by the literal
ctcMIpFileNamelLen in a CTC definitions file. Note that this maximum length
includes the null termination character (NUL).

fileld
type: integer (unsigned)
access: write only

mechanism: by reference

This argument is the address of a 32-bit integer that receives a file identifier for
the opened voice file. You use the returned file identifier with the
ctcMlIpPlayMessage routine.

Features Specific to Nortel Meridian Switches D-41

ctcMIpPlayMessage

ctcMIpPlayMessage
Play a Voice Message

Format in C
unsigned int ctcMIpPlayMessage (ctcChanld channel,

unsigned int fileld,
unsigned int clearMode,
unsigned int interruptMode,
unsigned int numberOfSegments,
unsigned short *fileSegments)

Description

This routine plays a message to a caller. The voice file containing the message
must be opened with ctcMIpOpenVoiceFile before it can be played.

The message can consist of one or more voice segments in the open voice file.
Using ctcMIpPlayMessage, you can specify:

= The number of voice segments that will be played
= Which voice segments are played to make up the message

= Whether the user can interrupt the message by pressing a key on their
telephone

When the message has been played (or interrupted), the ctcK_MIpEndOfPlay
event is returned.

After ctcMIpPlayMessage, you can use other routines, for example, the
ctcMlIpCollectDigits routine to collect DTMF digits entered by the caller in
response to the message. However, at the end of the call, you must use
ctcMlIpCloseVoiceFile to close the voice file.

Arguments
channel
type: ctcChanld
access: read only

mechanism: by value

This argument is a ctcChanld datatype that contains the channel identifier
(channel ID) value returned by ctcAssign for the voice channel.

D-42 Features Specific to Nortel Meridian Switches

ctcMIpPlayMessage

fileld
type: integer (unsigned)
access: read only

mechanism: by value

This 32-bit integer specifies the file identifier for the opened voice file. Specify
the file identifier returned by the ctcMIpOpenVoiceFile routine.

clearMode
type: integer (unsigned)
access: read only

mechanism: by value

This 32-bit integer indicates whether the key buffer is cleared before playing
commences. The key buffer contains the DTMF digits entered by the caller.

Specify one of the following values:

Value Description

ctcK_MlIpClearOn Specifies that the key buffer is cleared before playing
commences.

ctcK_MlpClearOff Specifies that the key buffer is not cleared.

Note that if you clear the buffer and the caller presses a key to interrupt the
message, the buffer will contain the interrupt key when playing has finished.

interruptMode
type: integer (unsigned)
access: read only

mechanism: by value

This 32-bit integer indicates whether the played message can be interrupted by
pressing a key.

Specify one of the following values:

Value Description

ctcK_MlplnterruptOn Specifies that the caller can interrupt the message by
pressing a key.

ctcK_MlplinterruptOff Specifies that the caller cannot interrupt the message by
pressing a key.

Features Specific to Nortel Meridian Switches D-43

ctcMIpPlayMessage

numberOfSegments
type: integer (unsigned)
access: read only

mechanism: by value

This 32-bit integer specifies the number of voice segments that will be played
from the open voice file. This value is used to determine the number of offsets
that are referenced by the fileSegments argument.

fileSegments

type: short (unsigned)
access: read only
mechanism: by reference

This argument is the address of an array of words. Each word contains a file
segment offset. This is a hex number between 1 and 1000 that points to the start
of a voice segment in the open file. By specifying the offset for the segment, you
can determine which voice segments are played.

The number of words in the array is defined by the value you specify with the
numberOfSegments argument.

The maximum number of words in the array is specified by the literal
ctcMIpMaxSeglLen in a CTC definitions file (see Section 1.5).

D-44 Features Specific to Nortel Meridian Switches

A

accountlinfo field
ctcEventData structure, 2-53
ACD agent
See Agent
ACD queues
See Groups
ACD splits
See Groups
Active state, 2-43
Add monitor
ctcAddMonitor, 2-2
restriction, 2-3
Agent
data, 2-51, C-7, D-29
events, C-11, D-15
ID, 2-50, B-28, D-29
log in, B-28, C-11, D-29
log out, B-29, C-11, D-29
logical agents, 2-51
monitoring, 2-91
operating mode, 2-29
password, 2-30, 2-51, B-28
position ID, D-9
setting status, 1-3, 2-84
status information, 2-29
work mode, 2-50
agentData field
ctcEventData structure, 2-51
agentGroup field
ctcEventData structure, 2-51

agentld field

ctcEventData structure, 2-50
agentMode field

ctcEventData structure, 2-50
Answering a call

ctcAnswerCall, 2-6
applicationData field

ctcEventData structure, 2-49

Arguments
optional, 1-10
order, 1-7

passed by reference, 1-10
passed by value, 1-10
use, 1-7
ASAI, C4
version, C-4
Assigning a channel
CSTA support, B-4
ctcAssign, 2-8
DEFINITY G3 support, C-4
Meridian support, D-6
Associate data
CSTA support, B-7
ctcAssociateData, 2-15
Associate sets, D-5
AST, D-5

B

Index

Barge In, 2-76, 2-77

Busy destination
barge in, 2-76
campon, 2-76

Index-1

ring back, 2-76 DEFINITY G3 support, C-6

Meridian support, D-10

C cdecl, 1-20
CDN
Meridian, D-7, D-10
event qualifiers, B-15, C-16, D-17 Channel
events, 2-43, A-5, B-15, C-10, D-15 assigning, 1-2

forwarding, 2-87

identifier, See Call reference identifier
parties, 2-49, 2-58, A-5

pickup within a group, 2-71
gueuing, 2-76

reference, See Call reference identifier
routing, 2-58, 2-107

states, 2-42 to 2-43

types, 2-46, A-5

vector, C-4, C-23

Call reference identifier

description, 2-41
Meridian support, D-5 to D-6
monitoring, 2-91
returned by ctcGetEvent, 2-41

Called party

calledParty, 2-49

CLID, 2-49,C-12,D-21
CSTA support, B-19
definition, 2-49

DEFINITY G3 support, C-12
DN, 2-49

deassigning, 1-2,2-24
identifier, description, 2-9
identifier, when to use, 2-8
monitoring, 1-3, 2-55
routines for controlling, 1-1
CLID
called party, 2-49
DEFINITY G3 support, C-12
Meridian support, D-21
other party, 2-47
third party, 2-48
Closing a voice file
ctcMIpCloseVoiceFile, D-33
Collect digits
ctcMIpCollectDigits, D-34
Communications channel
See Channel
Compiling a program
Digital UNIX, 1-16
HP-UX, 1-16
OpenVMS, 1-17
0s/2, 1-18

DNIS, 2-49, C-12 SCO OpenServer, 1-18
group, 2-49 SCO UnixWare, 1-18
identifying, 2-49 Solaris, 1-19
information returned, 2-49 Windows 3.1/3.11, 1-19
Meridian support, D-21 Windows 95, 1-20

qualifier, 2-49 Windows NT, 1-20
trunk, 2-49 Condition values, 1-12
type, 2-49 CSTA support, B-67

calledParty fields

ctcEventData structure, 2-49
Calling Line ID

See CLID
callsQueued field

ctcEventData structure, 2-53
Camp On, 2-76, 2-77
Canceling a call

ctcCancelCall, 2-17

ctcErrMsg, 2-27

ctcUnsupAPlversion, 2-4, 2-11

defined, 3-1

definitions file, 1-11

Meridian overload, D-6
Conference calls

completing, 2-18

ctcConferenceJoin, 2-18

ctcConsultationCall, 2-20

Index-2

initiating, 2-20

Constants
definitions file, 1-11

Consultation call
ctcConsultationCall, 2-20

Consultation hold
ctcConsultationCall, B-7
disconnecting a call, 2-17
effects of ctcHangupCall, 2-64
Meridian support, D-11
retrieving the call, 2-80
swapping calls, 2-100

Control Program, 2-13, 3-4

Controlled DN
See CDN

CSTA switches
condition values, B-67
ctcAssign, B-4
ctcAssociateData, B-7
ctcConsultationCall, B-7
ctcCstaEscape, B-56
ctcCstaGetPrivateData, B-59
ctcCstaGetPrivateEventData, B-61
ctcCstaGetPrivateRouteData, B-63
ctcCstaSetPrivate, B-65
ctcDeflectCall, B-8
ctcGetCallForward, B-8
ctcGetChannellnformation, B-9
ctcGetEvent, B-10
ctcGetRouteQuery, B-25
ctcGetRoutingEnable, B-2
ctcMakeCall, B-26
ctcMakePredictiveCall, B-27
ctcRespondToRouteQuery, B-28
ctcSendDTMF, B-3
ctcSetAgentStatus, B-28
ctcSetCallForward, B-29
ctcWinGetEvent, B-10
ctcWinGetRouteQuery, B-25
features supported, B-1

CTC
definition, 1-1

CTC API
new features, 1-21
V2.0 features, 1-21

CTC client

shareable image, 1-17

shareable object, 1-16
ctcAddMonitor, 2-2

and Windows 3.1/3.11, 2-3

restriction, 2-3
ctcAnswerCall, 2-6
ctcAssign, 1-2, 2-8

CSTA support, B-4

DEFINITY G3 support, C-4

Meridian support, D-6
ctcAssociateData, 2-15

CSTA support, B-7
ctcCancelCall, 2-17

compared with ctcHangupCall, 2-17

DEFINITY G3 support, C-6

Meridian support, D-10
ctcConferenceJoin, 2-18

initiating, 2-20

Meridian support, D-5
ctcConsultationCall, 2-20

CSTA support, B-7

Meridian support, D-11
ctcCstaEscape, B-56
ctcCstaGetPrivateData, B-59
ctcCstaGetPrivateEventData, B-61
ctcCstaGetPrivateRouteData, B-63
ctcCstaSetPrivate, B-65
ctcDeassign, 1-2, 2-24

when to use, 2-24
ctcDeflectCall, 2-25

CSTA support, B-8

DEFINITY G3 support, C-6
ctcErrMsg, 1-3, 2-27
ctcEventData structure, 2-51
ctcGetAgentStatus, 1-3, 2-29

DEFINITY G3 support, C-7
ctcGetCallForward, 1-3, 2-31

CSTA support, B-8

DEFINITY G3 support, C-7
ctcGetChannellnformation, 1-2, 2-33

CSTA support, B-9

DEFINITY G3 support, C-7

information returned by, 2-33

Meridian support, D-12

when to use, 2-33

Index-3

ctcGetDoNotDisturb, 1-3, 2-38
ctcGetEvent, 1-4, 2-39
creating a thread for, 1-14
CSTA support, B-10
DEFINITY G3 support, C-8
lost event data, 2-55
Meridian support, D-13
ctcGetMessageWaiting, 1-3, 2-56
ctcGetMonitor, 1-3, 2-57
ctcGetRouteQuery, 2-58
creating a thread for, 1-14
CSTA support, B-25
DEFINITY G3 support, C-22
Meridian support, D-26
ctcGetRoutingEnable, 1-3, 2-62
CSTA support, B-2
ctcHangupCall, 2-64
call references, 2-64
compared with ctcCancelCall,
ctcHoldCall, 2-65
ctcMakeCall, 2-66
and conferencing, 2-20
CSTA support, B-26
DEFINITY G3 support, C-24
Meridian support, D-27
ctcMakePredictiveCall, 2-68
CSTA support, B-27
DEFINITY G3 support, C-24
ctcMIpCloseVoiceFile, D-33
ctcMlIpCollectDigits, D-34
ctcMIpLogoffMailBox, D-37
ctcMIpLogonMailBox, D-38
ctcMIpOpenVoiceFile, D-40
ctcMIpPlayMessage, D-42
ctcPickupCall, 2-70
ctcReconnectHeld, 2-72
ctcRemoveMonitor, 2-74
and Windows 3.1/3.11, 2-74
restriction, 2-74
ctcRespondTolnactiveCall, 2-76
ctcRespondToRouteQuery, 2-78
CSTA support, B-28
DEFINITY G3 support, C-25
Meridian support, D-27

Index-4

ctcRetrieveHeld, 2-80
ctcSendDTMF, 2-82
CSTA support, B-3
ctcSetAgentStatus, 1-3, 2-84
CSTA support, B-28
DEFINITY G3 support, C-26
Meridian support, D-28
ctcSetCallForward, 1-3, 2-87
CSTA support, B-29
DEFINITY G3 support, C-27
Meridian support, D-30
ctcSetDoNotDisturb, 1-3, 2-89
DEFINITY G3 support, C-27
ctcSetMessageWaiting, 1-3, 2-90
ctcSetMonitor, 1-3, 2-91
monitor channels, 2-9
ctcSetRoutingEnable, 1-3, 2-93
ctcSingleStepTransfer, 2-96
CSTA support, B-3
Meridian support, D-30
ctcSnapshot, 1-3, 2-98
DEFINITY G3 support, C-28
ctcSwapWithHeld, 2-100
ctcTransferCall, 2-101
Meridian support, D-5, D-31
CTCVARS.BAT, 1-21
ctcWinGetEvent, 2-103
CSTA support, B-10
DEFINITY G3 support, C-8
Meridian support, D-13
ctcWinGetRouteQuery, 2-107
CSTA support, B-25
DEFINITY G3 support, C-22
Meridian support, D-26

D

Data structures
definitions file, 1-11
description, 1-8

Data types, 1-7
ctcAccountinfo, 1-9
ctcApplString, 1-9
ctcAssignData, 1-9
ctcCallData, 1-9
ctcChanData, 1-9

ctcChanld, 1-9, 2-9
ctcDeviceString, 1-9
ctcEventData, 1-9
ctcLogldString, 1-9
ctcLpvASB, 1-9
ctcNameString, 1-9
ctcNetString, 1-9
ctcRouteData, 1-9
ctcTimeStamp, 1-10
structures, 1-8

DCE Thread Library, 1-15

Deassigning a channel
ctcDeassign, 2-24

Definitions files, 1-11
condition values, 1-11
constants, 1-11
data structures, 1-11
location, 1-12

DEFINITY G3
ACD splits, C-4
agent events, C-11
call event qualifiers, C-15
call types, C-13
ctcCancelCall, C-6
ctcDeflectCall, C-6
ctcGetAgentStatus, C-7
ctcGetCallForward, C-7
ctcGetChannellnformation, C-7
ctcGetEvent, C-8
ctcGetRouteQuery, C-22
ctcMakeCall, C-24
ctcMakePredictiveCall, C-24
ctcRespondToRouteQuery, C-25
ctcSetAgentStatus, C-26
ctcSetCallForward, C-27
ctcSetDoNotDisturb, C-27
ctcSnapshot, C-28
ctcWinGetEvent, C-8
ctcWinGetRouteQuery, C-22
dial-ahead digits, C-25
events not supported, C-10
features supported, C-1
groups, C-4
hunt groups, C-4

Deflecting a call
ctcDeflectCall, 2-25, B-8, C-6

Deliver state, 2-43
destination, 2-76
Device
DN, 2-33
identifying, 2-8
type, 2-33
Dialable number, 1-8, 2-66
Dial-ahead digits
DEFINITY G3, C-25
Dialed Number Identification Service
See DNIS
Digital UNIX
compiling and linking programs,
DCE Thread Library, 1-15
Directed Call Pickup, 2-70
Directory number, 1-8
Disconnecting a call
ctcCancelCall, 2-17
ctcHangupCall, 2-64
DN
called party, 2-49
other party, 2-47
third party, 2-48
DNIS
called party, 2-49
DEFINITY G3 support, C-12
other party, 2-47
third party, 2-48
Do-Not-Disturb, 2-89
See also ctcSetDoNotDisturb
DTMF tones
ctcSendDTMF, 2-82, B-3
generating, 2-82
dtmfDigits field
ctcEventData structure, 2-51
DEFINITY G3 support, C-23
Meridian support, D-22
Dual-Tone Multi-Frequency
See DTMF tones
Dynamic run-time import

linking Windows 3.1/3.11 programs,

E

EAS
See Expert Agent Selection

Error messages

1722, 2-13

ctcErrMsg, 2-27

ctcRpcConnecFail, 2-8

ctcServerUnknown, 2-13

See also Condition values
event field

ctcEventData structure, 2-43
eventQualifier field

ctcEventData structure, 2-46
Events, 2-43 to 2-46

agent events, 2-44

CSTA, B-12to B-24

data lost, 2-55

DEFINITY G3, C-8to C-21

get events, 2-44

Meridian, D-15 to D-20

qualifiers, 2-46, B-15, C-16, D-17, D-18

switch support, A-5
Examples
CTC Demo, 1-16
CTC_EXP.C, 1-16
Phone Watch, 1-16
Exception handling, 1-12
Expert Agent Selection, C-7, C-26

F

ctcGetChannellnformation,
C-7,D-12
ctcGetDoNotDisturb, 2-38

2-33, B-9,

ctcGetEvent, 2-39, B-10, C-8, D-13

ctcGetMessageWaiting, 2-56
ctcGetMonitor, 2-57

ctcGetRouteQuery, 2-58, B-25, C-22,

D-26

ctcGetRoutingEnable, 2-62, B-2
ctcWinGetEvent, 2-103, B-10, C-8, D-13
2-107, B-25,

ctcWinGetRouteQuery,
C-22, D-26

Group

events, 2-55
Groups

ACD Splits, C-4

CSTA, B-12

DEFINITY G3, C-11

information returned, C-10

Meridian, D-15

monitoring, 2-91, D-15

See also Queues

skill-based hunt groups, C-4

states, 2-55

H

Fail state, 2-43

Feature phone, 2-66
hands-free answering, 2-6

Forwarding calls
canceling, 2-87
conditions for, 2-87
ctcGetCallForward, 2-31
ctcSetCallForward, 2-87
current mode, 2-31

G

Get routines
ctcGetAgentStatus, 2-29, C-7

ctcGetCallForward, 2-31, B-8, C-7

Index-6

Hangingup acall, 1-4
ctcHangupCall, 2-64
Held calls
retrieving, 2-80
swapping, 2-100
Hold
and ctcHangupCall, 2-64
ctcHoldCall, 2-65, D-3
putting a call on, 2-65
state, 2-43
swapping calls, 2-100
taking a call off, 1-5
HP-UX
compiling and linking programs,
DCE Thread Library, 1-15
definitions files, 1-11
Hunt groups
DEFINITY G3, C-4

1-16

IAPG group
Meridian, D-5
Implicit import

linking Windows programs, 1-19

Inactive calls

responding to, 2-76
Incoming calls

state changes, 2-42
Initiate state, 2-43

logicalAgent field, 2-51
Lost event data, 2-55

Intrude, 2-76
L

Line type, 2-33
Link

gone down, 1-12
logical identifier, 2-13
reset, 1-12
Linking a program
Digital UNIX, 1-16
HP-UX, 1-16
OpenVMS, 1-17
0s/2, 1-18
SCO OpenServer, 1-18
SCO UnixWare, 1-18
Solaris, 1-19
Windows 3.1/3.11, 1-19
Windows 95, 1-20
Windows NT, 1-20
Log off mailbox
ctcMIpLogoffMailBox, D-37
Log on mailbox
ctcMIpLogonMailBox, D-38
Logical agents, 2-85
CSTA support, B-28
DEFINITY G3 support, C-26
Meridian support, D-29
Logical identifier
specifying, 2-13

Making calls

ctcMakecCall, 2-66, B-26, C-24, D-5,

D-27

ctcMakePredictiveCall, 2-68, B-27, C-24

Meridian

500 and 2500 sets, D-9
ACD queue numbers, D-9
agent events, D-15

AST, D-5

call event qualifiers, D-17
call events, D-15

Call Reference Identifier, D-5
call states, D-15

call types, D-20
configuration, D-4
ctcAssign, D-6
ctcCancelCall, D-10
ctcConferenceJoin, D-5
ctcConsultationCall, D-11
ctcGetChannellnformation, D-12
ctcGetEvent, D-13
ctcGetRouteQuery, D-26
ctcMakeCall, D-27
ctcMIpCloseVoiceFile, D-33
ctcMIpCollectDigits, D-34
ctcMIpLogoffMailBox, D-37
ctcMIpLogonMailBox, D-38
ctcMIpOpenVoiceFile, D-40
ctcMIpPlayMessage, D-42
ctcRespondToRouteQuery, D-27
ctcSetAgentStatus, D-28
ctcSetCallForward, D-30
ctcSingleStepTransfer, D-30
ctcTransferCall, D-5, D-31
ctcWinGetEvent, D-13
ctcWinGetRouteQuery, D-26
features supported, D-1
IAPG group, D-5

ISAP, D-5

Meridian Link software, D-2
switch overload, D-6

Index-7

switch software required, D-2
UsM, D-5
Meridian 1
See Meridian
Meridian Mail, 1-6, D-10
Meridian SL-1
See Meridian
Message waiting indicator, 2-90
MLP routines
ctcMIpCloseVoiceFile, D-33
ctcMIpCollectDigits, D-34
ctcMIpLogoffMailBox, D-37
ctcMIpLogonMailBox, D-38
ctcMIpOpenVoiceFile, D-40
ctcMIpPlayMessage, D-42
Monitor channels, 1-2
and ctcSetMonitor, 2-9
and Windows 3.1/3.11, 2-9
ctcAddMonitor, 2-2
ctcRemoveMonitor, 2-74
description, 2-10

monitoring other monitor channels,

restriction, 2-9

routines supported, 2-9
Monitoring, 1-2,2-91

ACD groups, 2-39, 2-91

ACD queues, 2-91

call queues, 2-91

CSTA support, B-12

DEFINITY G3 support, C-11

devices, 2-39, 2-91

events, 2-43

for incoming call, 2-6

groups, 2-39, 2-55, 2-91

information, 2-57

logical entities, 2-39

Meridian support, D-15

monitor channels, 2-2, 2-39

off, 2-92

on, 2-92

other parties, 2-47

gueues, 2-39

switch support, A-5

third parties, 2-48
monitorParty field

ctcEventData structure, 2-50

Index-8

Multithreaded programs
and Windows 3.1/3.11, 1-13
creating, 1-14
description, 1-13
when touse, 1-13
with CTC, 1-14

N

nestedMonitorChannel field
ctcEventData structure, 2-50
netCallld field
ctcEventData structure, 2-41
Network problems
exception-handling, 1-12
Null state, 2-43

O

Off-hook, 2-43
oldNetCallld field
ctcEventData structure, 2-42
olfRefld field
ctcEventData structure, 2-42
On-hook dialing
full, 2-66
limited, 2-66
Opening a voice file
ctcMIpOpenVoiceFile, D-40
OpenVMS
compiling and linking programs,
DCE Thread Library, 1-15
Options file, 1-17
Originating party
definition, 2-51
group, 2-52
qualifier, 2-52
trunk, 2-52
type, 2-52
originatingParty fields
ctcEventData structure, 2-51
0S/2
compiling and linking programs,
DCE Thread Library, 1-15
Other party
CLID, 2-47,C-12,D-21

1-17

1-18

CSTA support, B-19
definition, 2-47
DEFINITY G3 support, C-12
DN, 2-47
DNIS, 2-47,C-12
group, 2-47
identifying, 2-49
Meridian support, D-21
qualifier, 2-47
trunk, 2-47
type, 2-47
otherParty fields
ctcEventData structure, 2-47
Outgoing calls
state changes, 2-42

P

Prime number, 2-33
Private data

CSTA Phase Il routines, B-29
privateData field

ctcEventData structure, 2-54
Program linking

OpenVvMS, 1-17

Q

Parties to a call, 2-49
Party information, 2-47, 2-51
called party, 2-49
CSTA support, B-19
DEFINITY G3 support, C-12
Meridian support, D-21
other party, 2-47
qualifier, 2-47
switch support, A-5
third party, 2-48
Passing mechanism
and optional arguments, 1-11
by reference, 1-10
by value, 1-10
Paths
Windows 95, 1-21
Windows NT, 1-21
Picking up calls
ctcPickupCall, 2-70
pickup group, 2-70
Playing a message
ctcMIpPlayMessage, D-42
Position ID
for ACD agent, D-9
Predictive dialing, 2-68
CSTA support, B-27
DEFINITY G3 support, C-24

Queued state, 2-43

Queues
campon, 2-76
CSTA, B-12

monitoring, 2-55, 2-91
See also groups

R

Receive state, 2-43
Reconnecting a held call
ctcReconnectHeld, 2-72
refid field
ctcEventData structure, 2-41
Remote Procedure Call
See RPC
Remove monitor
ctcRemoveMonitor, 2-74
restriction, 2-74
Responding to inactive calls
ctcRespondTolnactive, 2-76
Responding to route queries
ctcRespondToRouteQuery, 2-78, B-28
DEFINITY G3 support, C-25
Meridian support, D-27
Retrieving a call on hold
ctcRetrieveHeld, 2-80, D-4
Ring Back, 2-76
when free, 2-77
when next used, 2-77
Route determined
See Deliver state
Route points, 2-58
description, 2-10
Meridian, D-10

Index-9

Routines, 2-2 to 2-111
access to data, 1-10
arguments, 1-7
call sequence, 1-6
ctcAddMonitor, 2-2
ctcAnswerCall, 2-6
ctcAssign, 2-8
ctcAssociateData, 2-15
ctcCancelCall, 2-17
ctcConferenceJoin, 2-18
ctcConsultationCall, 2-20
ctcDeassign, 2-24
ctcDeflectCall, 2-25
ctcErrMsg, 2-27
ctcGetAgentStatus, 2-29
ctcGetCallForward, 2-31
ctcGetChannellnformation, 2-33
ctcGetDoNotDisturb, 2-38
ctcGetEvent, 2-39
ctcGetMessageWaiting, 2-56
ctcGetMonitor, 2-57
ctcGetRouteQuery, 2-58
ctcGetRoutingEnable, 2-62
ctcHangupCall, 2-64
ctcHoldCall, 2-65
ctcMakeCall, 2-66
ctcMakePredictiveCall, 2-68
ctcPickupCall, 2-70
ctcReconnectHeld, 2-72
ctcRemoveMonitor, 2-74
ctcRespondTolnactiveCall, 2-76
ctcRespondToRouteQuery, 2-78
ctcRetrieveHeld, 2-80
ctcSendDTMF, 2-82, B-3
ctcSetAgentStatus, 2-84
ctcSetCallForward, 2-87
ctcSetDoNotDisturb, 2-89
ctcSetMessageWaiting, 2-90
ctcSetMonitor, 2-91
ctcSetRoutingEnable, 2-93
ctcSingleStepTransfer, 2-96, B-3
ctcSnapshot, 2-98
ctcSwapWithHeld, 2-100
ctcTransferCall, 2-101
ctcWinGetEvent, 2-103
ctcWinGetRouteQuery, 2-107

Index-10

format, 1-7
functions, 1-1
how to call, 1-12
in a multithreaded program, 1-14
passing mechanism, 1-10
status returns, 1-12
synchronous operation, 1-12
Routing
ctcGetRoutingEnable, 2-62
ctcSetRoutingEnable, 2-93
description, 2-58
get route query, 2-58
new route data, 2-61
RPC, 1-12
ctcRpcConnecFail, 2-8
errors, 2-27

rpc_s_server_unavailable error, 2-13

S

SCO OpenServer

compiling and linking programs, 1-18

DCE Thread Library, 1-15
definitions files, 1-11
SCO UnixWare

compiling and linking programs, 1-18

definitions files, 1-11
Screened transfer, 2-101
secOldRefld field

ctcEventData structure, 2-52
Send DTMF tones

ctcSendDTMF, 2-82, B-3
Set routines

ctcSetAgentStatus, 2-84, B-28, C-26,

D-28

ctcSetCallForward, 2-87, B-29, C-27,

D-30
ctcSetDoNotDisturb, 2-89, C-27
ctcSetMessageWaiting, 2-90
ctcSetMonitor, 2-91
ctcSetRoutingEnable, 2-93

Single-step transfer
CSTA support, B-3
ctcSingleStepTransfer, 2-96
Meridian support, D-30

Snapshot the state of a device
ctcSnapshot, 2-98, C-28
Solaris
compiling and linking programs, 1-19
DCE Thread Library, 1-15
definitions, 1-11
state field
ctcEventData structure, 2-42
States
changing, 2-42
described, 2-42
monitoring, 2-91
Status information, 1-2
Status returns, 1-7, 1-12
unsigned longwords, 1-7
stdcall, 1-20
Structure
description, 1-8
Swap calls
ctcSwapWithHeld, 2-100

T
Telephony functions, 1-4
Terminal

Meridian, D-7
Third party

CLID, 2-48,C-12,D-21

CSTA support, B-19

definition, 2-48

DEFINITY G3 support, C-12

DN, 2-48

DNIS, 2-48, C-12

group, 2-48

indentifying, 2-49

Meridian support, D-21

qualifier, 2-48

trunk, 2-48

type, 2-48
thirdParty fields

ctcEventData structure, 2-48
Thread stack size

Windows 95 programs, 1-20

Windows NT programs, 1-20
Threads

and data passing, 1-14

and route data, 2-61
description, 1-13
execution, 1-14
timeStamp field
ctcEventData structure, 2-53
Transferring a call
ctcBadObjState returned, D-11, D-32
ctcSingleStepTransfer, 2-96, D-30
ctcTransferCall, 2-101, D-31
initiating, 2-20
screened and unscreened, 2-101
single-step transfer, 2-96
Trunks
active state, 2-42
type field
ctcEventData structure, 2-46
DEFINITY G3 support, C-13

U

Unavailable state, 2-43
Unscreened transfer, 2-101
Unsigned integers

and Windows 3.1/3.11, 1-7

Vv

VDN
and route points, C-4
description, C-22
Vector Directory Number
See VDN
Voice channel
assigning to, D-10
class number, D-10
Meridian Mail, D-10
routines supported, D-7 to D-8

w

Windows 3.1/3.11
ctcWinGetEvent, 2-103
ctcWinGetRouteQuery, 2-107
definition, Xiv
definitions files, 1-11
unsigned longwords, 1-7

Index-11

Windows Socket interface, 2-103, 2-107

Windows 95

calling convention, 1-20

cdecl, 1-20

compiling and linking programs, 1-20
ctcWinGetEvent, 1-15
ctcWinGetRouteQuery, 1-15
definitions files, 1-11

paths, 1-21

stdcall, 1-20

thread stack size, 1-20

threads, 1-15

Windows for Workgroups, Xiv
Windows NT

calling convention, 1-20

Index-12

cdecl, 1-20

compiling and linking programs, 1-20
ctcRpcConnecFail, 2-8
ctcWinGetEvent, 1-15
ctcWinGetRouteQuery, 1-15
definitions files, 1-11

ERROR INVALID HANDLE, 2-8
paths, 1-21

stdcall, 1-20

system error, 2-8

thread stack size, 1-20

threads, 1-15

	About This Manual
	Introduction
	1.1 CTC API Routines
	1.1.1 Routines That Control the Communications Channel
	Table 1–1 Controlling the Communications Channel (Continued)

	1.1.2 Routines for Telephony Functions
	Table 1–2 Telephony Functions (Continued)

	1.1.3 Switch-Specific Routines

	1.2 Sequence for Calling CTC API Routines
	1.3 Format of Routines
	1.3.1 Unsigned Integers and Windows 3.1/3.11

	1.4 Use of Arguments
	1.4.1 Data Type
	1.4.1.1 Data Structures
	1.4.1.2 Unions
	1.4.1.3 Arrays
	1.4.1.4 CTC Data Type Definitions
	Table 1–3 CTC Data Types (Continued)

	1.4.2 Access to Data
	1.4.3 Passing Mechanism
	1.4.4 Passing Optional Data

	1.5 Definitions
	Table 1–4 C Definitions Files

	1.6 Condition Values for Status Returns
	1.6.1 Link Problems

	1.7 Exception Handling
	1.8 Calling CTC Routines
	1.9 CTC and Multithreaded Programming
	1.9.1 Threads
	1.9.2 Multithreaded Programming
	1.9.3 Thread Execution
	1.9.4 Using Multithreaded Programming with CTC
	1.9.5 Creating a Multithreaded Program

	1.10 Using the CTC Windows Socket Interface
	1.11 Example Programs
	1.12 Compiling and Linking Your Program
	1.12.1 Digital UNIX Client
	1.12.2 HP-UX Client
	1.12.3 OpenVMS Client
	1.12.4 OS/2 Client
	1.12.5 SCO OpenServer Client
	1.12.6 SCO UnixWare Client
	1.12.7 Solaris Client
	1.12.8 Windows 3.1/3.11 Client
	1.12.9 Windows 95 and Windows NT Clients

	1.13 Changes to CTC for Version 3.0
	Table 1–5 Summary of Changes to CTC for V3.0 (Continued)

	1.14 Compatibility With Previous Versions of CTC

	CTC Routine Specifications
	ctcAddMonitor
	ctcAnswerCall
	ctcAssign
	ctcAssociateData
	ctcCancelCall
	ctcConferenceJoin
	ctcConsultationCall
	Table 2–1 Consult Type Values for ctcConsultationCall

	ctcDeassign
	ctcDeflectCall
	ctcErrMsg
	ctcGetAgentStatus
	Table 2–2 Agent Mode Values for ctcGetAgentStatus

	ctcGetCallForward
	Table 2–3 ctcGetCallForward Modes Returned

	ctcGetChannelInformation
	ctcGetDoNotDisturb
	ctcGetEvent
	Table 2–4 Call States Returned by ctcGetEvent
	Table 2–5 Agent Events Returned by ctcGetEvent
	Table 2–6 Call Events Returned by ctcGetEvent (Continued)
	Table 2–7 Other Party Information
	Table 2–8 Third Party Information
	Table 2–9 Called Part Information
	Table 2–10 Originating Party Fields�
	Table 2–11 Queue Monitoring

	ctcGetMessageWaiting
	ctcGetMonitor
	ctcGetRouteQuery
	Table 2–12 Information Returned by ctcGetRouteQuery (Continued)

	ctcGetRoutingEnable
	ctcHangupCall
	ctcHoldCall
	ctcMakeCall
	ctcMakePredictiveCall
	ctcPickupCall
	ctcReconnectHeld
	ctcRemoveMonitor
	ctcRespondToInactiveCall
	Table 2–13 Response Values for ctcRespondToInactiveCall

	ctcRespondToRouteQuery
	ctcRetrieveHeld
	ctcSendDTMF
	ctcSetAgentStatus
	Table 2–14 Agent Mode Values for ctcSetAgentStatus

	ctcSetCallForward
	Table 2–15 Call Forward Values for ctcSetCallForward

	ctcSetDoNotDisturb
	ctcSetMessageWaiting
	ctcSetMonitor
	ctcSetRoutingEnable
	ctcSingleStepTransfer
	ctcSnapshot
	ctcSwapWithHeld
	ctcTransferCall
	ctcWinGetEvent
	ctcWinGetRouteQuery
	Table 2–16 Information Returned by ctcWinGetRouteQuery (Continued)

	Errors and Conditions Returned
	3.1 Mapping Errors to Routines
	3.2 Source of Errors
	3.3 Types of Errors Returned by the Switch
	Table 3–1 Condition Values Returned (Continued)

	Features Common to All CTC Protocol/Switch Links
	Table A–1 Protocol/Switch-Specific Support for CTC Routines (Continued)
	A.1 Common CTC Functions
	A.2 Monitoring

	Features Specific to the CSTA Protocol
	B.1 Standard CTC Functions Supported by CSTA
	Table B–1 CTC Functions Specific to CSTA (Continued)

	B.2 ctcAssign
	B.2.1 Supported Devices
	B.2.2 Extension to the CTC API
	B.2.3 Devices and Supported Routines
	Table B–2 Routines Supported for CSTA Switches (Continued)

	B.2.4 Assigning to ODNs and ADNs on Ericsson MD110 Digital Telephone Sets

	B.3 ctcAssociateData
	B.4 ctcConsultationCall
	B.4.1 Application Data

	B.5 ctcDeflectCall
	B.5.1 Application Data

	B.6 ctcGetCallForward
	B.6.1 Call-Forward Settings Returned

	B.7 ctcGetChannelInformation
	B.7.1 Line Types
	B.7.2 Set Types
	B.7.3 Switch-Specific Support

	B.8 ctcGetEvent and ctcWinGetEvent
	B.8.1 Fields Used in the ctcEventData Structure
	Table B–3 Event Information Supported by CSTA Switches (Continued)

	B.8.2 Group Monitoring
	B.8.3 Return Values for Transient States
	B.8.4 Agent Events
	Table B–4 Agent Event Information Returned by CSTA Phase I Switches�
	Table B–5 Agent Event Information Returned by CSTA Phase II Switches�

	B.8.5 Call Event Qualifiers for CSTA
	Table B–6 Call Event Qualifiers for CSTA (Continued)

	B.8.6 Other, Third, and Called Party Qualifiers
	B.8.7 Party Information for Call Events
	Table B–7 CSTA Party Information for Call Events (Continued)

	B.8.8 Timestamp

	B.9 ctcGetRouteQuery and ctcWinGetRouteQuery
	B.9.1 Fields Used in the ctcRouteData Structure
	Table B–8 Route Information Supported by CSTA Switches (Continued)

	B.9.2 Timestamp

	B.10 ctcMakeCall
	B.10.1 Application Data

	B.11 ctcMakePredictiveCall
	B.11.1 Allocation Argument
	B.11.2 Application Data
	B.11.3 Number of Rings

	B.12 ctcRespondToRouteQuery
	B.12.1 Application Data

	B.13 ctcSetAgentStatus
	B.13.1 Logging In Agents
	B.13.2 Logging Out Agents
	B.13.3 Agent Mode Not Supported

	B.14 ctcSetCallForward
	B.14.1 Supported Call-Forwarding Settings

	B.15 CTC Routines for CSTA Switches
	B.15.1 Requirements
	B.15.2 Format of Private Data
	B.15.3 privateDataArray Argument
	Table B–9 Private Data Type Values (Continued)
	Table B–10 Data Types Supported by Private Data Routines (Continued)

	B.15.4 Private Data Routines
	ctcCstaEscape
	ctcCstaGetPrivateData
	ctcCstaGetPrivateEventData
	ctcCstaGetPrivateRouteData
	ctcCstaSetPrivateData

	B.16 Condition Values Returned

	Features Specific to the Lucent DEFINITY Generic
	C.1 CTC Functions Supported by DEFINITY G3 Switches
	Table C–1 CTC Routines for DEFINITY G3 Switches (Continued)

	C.2 Lucent DEFINITY Software
	C.3 ctcAssign
	C.3.1 Supported Devices
	C.3.2 Assigning a Channel to a Route Point
	C.3.3 Devices and Supported Routines
	Table C–2 Routines Supported for DEFINITY G3 Devices (Continued)

	C.4 ctcCancelCall
	C.4.1 Device State

	C.5 ctcDeflectCall
	C.5.1 Required Software
	C.5.2 Supplying Application Data

	C.6 ctcGetAgentStatus
	C.6.1 Supplying Agent Data

	C.7 ctcGetCallForward
	C.7.1 Call Forward Modes

	C.8 ctcGetChannelInformation
	C.8.1 Line Types
	C.8.2 Set Types
	C.8.3 Switch-Specific Support

	C.9 ctcGetEvent and ctcWinGetEvent
	C.9.1 Fields Used in the ctcEventData Structure
	Table C–3 Event Information Supported by DEFINITY Switches (Continued)

	C.9.2 Events Not Returned
	C.9.3 Information Returned for Channels Assigned to Route Points or Groups
	C.9.4 Events Returned for Channels Assigned to Groups
	C.9.5 Event Returned for Monitored Groups
	C.9.6 Agent Events
	C.9.7 Party Type Information
	C.9.8 Party Qualifier
	C.9.9 Call Types
	Table C–4 DEFINITY Call Types (Continued)

	C.9.10 Call Events and States
	Table C–5 Call Events and States Returned (Continued)

	C.9.11 Call Event Qualifiers for DEFINITY G3 Switches
	Table C–6 Call Event Qualifiers for DEFINITY G3 Switches�

	C.9.12 Mapping Qualifiers to Events
	Table C–7 DEFINITY Event Information Returned (Continued)

	C.9.13 Party Information for Call Events
	Table C–8 DEFINITY Party Information for Call Events (Continued)

	C.9.14 Application Data for Events
	C.9.15 Time Stamp

	C.10 ctcGetRouteQuery and ctcWinGetRouteQuery
	C.10.1 Fields Used in the ctcRouteData Structure
	Table C–9 Route Information Supported by DEFINITY G3 Switches (Continued)

	C.10.2 otherPartyType and calledPartyType Fields
	C.10.3 DTMF Digits
	C.10.4 Time Stamp

	C.11 ctcHangupCall
	C.11.1 Supported Devices
	C.11.2 Disconnecting Calls Made With ctcMakePredictiveCall

	C.12 ctcMakeCall
	C.12.1 Supported Devices
	C.12.2 On-Hook Dialing
	C.12.3 Off-Hook Prompting

	C.13 ctcMakePredictiveCall
	C.13.1 Supported Devices
	C.13.2 Allocation
	C.13.3 Number of Rings

	C.14 ctcRespondToRouteQuery
	C.14.1 Dial-Ahead Digits

	C.15 ctcSetAgentStatus
	C.15.1 Supported Devices
	C.15.2 Logging In Agents on EAS Switches
	C.15.3 Logging In Agents on Non-EAS Switches

	C.16 ctcSetCallForward
	C.16.1 Supported Settings

	C.17 ctcSetDoNotDisturb
	C.17.1 Busy Signal

	C.18 ctcSnapshot
	C.18.1 Required Software
	C.18.2 Supported States

	C.19 CTC Routine for the Lucent DEFINITY Switch
	ctcAsaiGetAcdStatus

	Features Specific to Nortel Meridian Switches
	D.1 Meridian Switch Software
	Table D–1 Meridian Software and Supported CTC Features

	D.2 Standard CTC Functions Supported by a Meridian Switch
	Table D–2 CTC Routines and Meridian Switches (Continued)

	D.3 Using CTC With Meridian Switches
	D.3.1 Configuring the Meridian Switch
	D.3.2 Call Reference Identifiers
	D.3.3 Switch Overload

	D.4 ctcAssign
	D.4.1 Supported Devices
	Table D–3 Routines Supported for Meridian Devices (Continued)

	D.4.2 Assigning to Voice Sets
	D.4.3 Assigning to ACD Agents
	D.4.4 Assigning to ACD Group Numbers
	D.4.5 Assigning to Route Points
	D.4.6 Assigning to Voice Channels

	D.5 ctcCancelCall
	D.6 ctcConsultationCall
	D.6.1 consultType Values
	D.6.2 callRefId and newCallRefId
	D.6.3 applicationData
	D.6.4 ctcBadObjState Returned for Initiating a Call Transfer

	D.7 ctcGetChannelInformation
	D.7.1 Line Type Values
	D.7.2 Prime Values
	D.7.3 Set Type Values
	D.7.4 Switch-Specific Support

	D.8 ctcGetEvent and ctcWinGetEvent
	D.8.1 Fields Used in the ctcEventData Structure
	Table D–4 Event Information Supported by Meridian Switches (Continued)

	D.8.2 Call Reference Identifiers Returned for Events
	D.8.3 Call States
	D.8.4 Group Events
	D.8.5 Route Point Events
	D.8.6 Agent Events
	D.8.7 Call Events Not Supported
	D.8.8 Switch-Specific Call Events
	D.8.9 Call Events and States
	Table D–5 Call Events and States Returned (Continued)

	D.8.10 Call Event Qualifiers
	Table D–6 Call Event Qualifiers for Meridian Switches (Continued)

	D.8.11 Call Types
	D.8.12 Other, Third, and Called Party Information
	D.8.13 Agent Modes
	D.8.14 DTMF Digits
	D.8.15 Originating Party Information
	D.8.16 Time Stamp
	D.8.17 Party Information and Events
	Table D–7 Meridian Party Information for Call Events (Continued)

	D.9 ctcGetRouteQuery and ctcWinGetRouteQuery
	D.9.1 Fields Used in the ctcRouteData Structure
	Table D–8 Route Information Supported by Meridian Switches (Continued)

	D.9.2 Time Stamp

	D.10 ctcMakeCall
	D.10.1 Application Data
	D.10.2 Call Reference Identifier

	D.11 ctcRespondToRouteQuery
	D.11.1 Responding to Route Queries
	D.11.2 Delayed Routing
	D.11.3 Application Data

	D.12 ctcSetAgentStatus
	D.12.1 agentMode
	D.12.2 agentData and logicalAgent

	D.13 ctcSetCallForward
	D.13.1 forwardMode

	D.14 ctcSingleStepTransfer
	D.14.1 Switch Software Required
	D.14.2 callRefId
	D.14.3 newCallRefId
	D.14.4 Supported Devices
	D.14.5 applicationData

	D.15 ctcTransferCall
	D.15.1 500 and 2500 Sets
	D.15.2 activeCallRefId
	D.15.3 heldCallRefId
	D.15.4 newCallRefId
	D.15.5 ctcBadObjState Returned for Call Transfer

	D.16 CTC Routines for Meridian Switches
	ctcMlpCloseVoiceFile
	ctcMlpCollectDigits
	ctcMlpLogoffMailBox
	ctcMlpLogonMailBox
	ctcMlpOpenVoiceFile
	ctcMlpPlayMessage

